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"Neural Network Models for Yield Enhancement in Semiconductor 

Manufacturing" and "Neural Networks for Inverse Parameter 

Modeling of IC Fabrication Stages" 

February 1997 

Summary 

This project utilizes the neurocomputing technology towards modeling semiconductor 

fabrication processes for which analytical descriptions do not exist. Using data measured 

on GaAs fabrication lines of microwave circuits, partial fabrication stages as well as the 

complete process have been modeled. The developed models allow yield estimation and 

the determination as to which devices/wafers should be continued in the fabrication line. 

Subsequently, sensitivity analysis can be performed on process input factors to reveal which 

inputs carry more importance in producing final electronic devices having targeted specifi- 

cations. 

The concept of neural network models of fabrication process has also been applied for 

achieving improved yield of fabricated devices. Process data have been evaluated for princi- 

pal components and reduced neural network models developed. Perceptron networks have 

then been inverted and process inputs recentered to maximize the yield. To achieve this, 

optimization has been performed in the reduced input space. The principal component anal- 

ysis allows for re-adjustment of actual inputs for maximum yield. The software DESCENT, 

developed as a part of this project, can be used as a tool for practical design centering 

for maximum yield. It should be noted that results of modeling and centering, including 

the DESCENT package, are available to model and improve yield of other fabrication and 

manufacturing techniques. 



1     Objectives 

The majority of the development cost for many military systems is in the design and fabrica- 

tion of the associated microelectronic integrated circuits (IC). In order to achieve acceptable 

fabrication yields, the integrated circuits must meet certain demanding system specifications 

involving complexity and frequency requirements [1]. 

The focus of this work is to develop a methodology allowing the maximization of the 

fabrication yield of Gallium Arsenide (GaAs) Microwave/Millimeter Wave Monolithic In- 

tegrated Circuits (MMIC) with respect to the material, process, and device parameters, 

while achieving acceptable circuit performance. The techniques developed in this project 

are applicable to GaAs IC technology and are also valid for other fabrication technologies, 

such as CMOS or BiCMOS technology. 

Stages of the microelectronic circuit fabrication process can be efficiently modeled with 

multilayer perceptron neural networks (MPNN) after pre-processing by Principal Compo- 

nent Analysis (PCA) of the underlying data. These methods are found to be useful for 

capturing the relationships between various stages of the manufacturing process, as well 

as between the process parameters and the resulting device parameters. Once the process 

model is identified, a practical degree of design centering can be achieved by inverse mod- 

eling [2]. In most cases, the design centering problem requires the solution for the desired 

values of early manufacturing parameters or process attributes given the target performance 

of the final product, or output. 
The first step in design centering is identification of the fabrication process [3]. The 

following critical stages of the GaAs IC fabrication process were selected for separate mod- 

eling [4]: substrate/active layer (S), post-contact/recess (CR), post-gate-metal (G), and 

final (F). The measurement data for the S process stage consists often substrate character- 

istics: optical scattering, Neut deep donor density, substrate resistivity, Hall mobility and 

carrier concentration, doping concentration, implant activation, drift mobility I, and drift 

mobility II. 
Measurements for the CR stage include: drain-source saturation currents and resistances 

(both contact and recess), contact resistance, contact and ohmic metal sheet resistance, 

and ohmic metal layer width. G and F stage characteristics consist of the MESFET DC 

parameters: drain, gate, source, drain-source, drain-gate and gate-source resistances, drain- 

source saturation current, pinch-off voltage, and device transconductance. Also, gate metal 

sheet resistance and gate metal width are included in the G stage measurements. 

The modeling of each stage requires first PCA pre-processing and then building a neu- 

ral network, as shown in Fig. 1. The PCA extracts orthogonal principal directions in the 

multidimensional input space in descending order as characterized by corresponding eigen- 

values (variances). This allows for reduction of the original input data dimension relevant 
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Figure 1: Microfabrication stage model block diagram. 

for subsequent inverse modeling. It has been found that the characteristics describing the 

consecutive fabrication stages are mutually correlated. Our simulations have shown that 

the data distribution present in measurements for stages S (10 variables), CR (8 variables) 

and G (8 variables) can effectively be reduced to 5 abstract variables, with normalized 

estimation error below 10% (after compression and expansion). 

Following the dimension reduction, a multilayer perceptron neural network (MPNN) 

is used to approximate the relationship between the input and output characteristics of a 

modeled stage. After training, the MPNN performs a nonlinear vector function /, which 

represents the stage-to-stage process model. 
The model acquired in this manner can be used for design centering. Assuming target 

values and tolerances for the final semiconductor device characteristics at stage F of the 

fabrication process, the desired values of earlier stages S, CR, or G parameters can be 

obtained in two steps: first, the value of the abstract variables at the network input satisfying 

the output target can be found by inverting the function performed by the trained network. 

Afterwards, the optimum values of these variables ensuring maximum yield probability 

under the assumption of non-correlated normal distribution of process variations in the 

principal directions are estimated. Finally, the optimal center settings for the original input 

variables are evaluated based on using the inverse PCA operator. 



2    GaAs Integrated Circuit Fabrication and Characterization 

As new technologies begin to mature, it is essential that research facilitates the transition 

of technology into the development cycle of industrial systems. Artificial neural networks 

is an intelligent computing technology that has matured to the point where the feasibility 

of its application in the development of such complex systems needs to be explored and a 

theoretical framework established. 

Neurocomputing models are helpful in situations when analytical solutions are not prac- 

tical due to the complexity of physical models, and this applies to the pertinent stages of 

the IC process. This, in turn, is caused by the lack of analytical relationships of key pro- 

cess/device parameters from one processing stage to the next or among each other. These 

relationships are not yet fully understood nor are all the effects they have on the final DC 

performance parameters [4]. 

This research effort is focused on the development of the conceptual framework for the 

utilization of neurocomputing technology to achieve enhanced yield in integrated circuit 

manufacturing. As the complexity and speed requirements of ICs increase, resulting in sub- 

micron geometries and compact designs, it is increasingly difficult to achieve acceptable 

fabrication yields, and this work addresses solutions of the yield improvement problem. 

Because modern ICs are vulnerable to inevitable statistical fluctuations of the starting 

material and are functions of rather complex and multivariate manufacturing processes, 

it seems that circuit yield may be increased to an acceptable level only through a costly 

iterative design and process adjustment approach. It is essential, therefore, that these 

fluctuations and relationships between various process stages are understood and properly 

modeled to possibly obtain a first-pass design. Such modeling typically involves relation- 

ships between the technological process attributes, layout dimensions, the resulting device 

parameters, and the final circuit performance. 

Once a wafer enters the fabrication process, it is desirable and cost effective to predict 

and estimate the circuit yield as early in the process as possible. This prediction will aid 

in the decision of whether or not to continue processing this particular wafer. The data is 

gathered by performing measurements on device Parametric Test Structures and Process 

Control Monitors at certain stages in the process. After these measurements are compared 

to acceptance windows, a determination can be made whether to continue the wafer through 

the process. 

Another yield-limiting factor in IC manufacturing is process uniformity. Although IC 

technologies are expected to produce uniform device properties over a large wafer area, 

this uniformity is especially difficult to achieve for GaAs IC technology because of material 

and processing deviations. From wafer to wafer, as well as within a wafer, there are large 

variations of material and process properties which strongly influence important factors in 
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final device/circuit performance. 

Ideally, process engineers need to perform whole wafer characterization and analysis of 

key parameters at each critical fabrication step. This characterization can be attempted 

through testing. However, with the increasing complexity of the multivariate fabrication 

processes, the comprehensive testing required to provide proper characterization results in 

large quantities of data. Moreover, these data are costly to acquire. To reduce the testing 

requirements, it becomes necessary to determine a minimum number of parameters to which 

the yield-limiting characteristics are most sensitive [5]. 

One of the objectives of this research is to demonstrate the feasibility and to develop 

the theoretical framework for neurocomputing techniques for use as a practical and cost- 

effective tool suitable for IC development. The reasons for a neural computation approach to 

IC manufacturing are numerous. Neural networks are known for the ability to encapsulate 

multidimensional statistical properties present in large data sets [6]. By examining the 

network model, complex cause-effect relationships between input and output parameters 

become more evident [7]. 

Traditionally, a variety of deterministic and statistical approaches have been used to 

reduce the data to forms that could be easily interpreted by the user. Very often, however, 

the large volume of these results and the "curse of dimensionality" place them beyond the 

ability of the user to readily and effectively interpret [8, 9]. When accurate conclusions 

cannot be made in a relatively short time period, the data from these tests are ignored 

and potentially valuable information is lost. Also, these IC process/device modeling ap- 

proaches, whether analytical or empirical, do not utilize the parametric values specific to 

a certain device location on a wafer. Variations of parametric values are typically repre- 

sented statistically. Actually, the values are often treated as mutually independent random 

variables described by joint probability density functions [10, 11]. Once the statistical dis- 

tribution is determined, the effect of the process/device variation on the device/circuit's 

performance is analyzed by performing simulations using Monte Carlo and other simulation 

techniques [12, 9, 13]. 
As shown in [14, 15, 16], many of these parametric variations do not occur in a random 

manner across a wafer but in a radial and/or axial pattern. These parameters should not 

be treated as uncorrelated mutually independent random variables [17, 18]. The approach 

presented below establishes a methodology in which a specific device's characteristics can 

be modeled based on its physical location within a wafer. 

The initial focus of this research was to develop neural network models of material, pro- 

cess, and device characteristics at several critical stages of the GaAs IC fabrication process. 

This would allow capturing of the relationships between the various stages of the fabri- 

cation process, and between the process parameters and the resulting device parameters. 
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Measurements of the starting material and in-process device characteristics were used to 

develop neural network-based approximators of IC parameters at critical stages of the fabri- 

cation process (intermediate process stage modeling). Careful selection of architectures has 

been made to achieve proper network generalization from the training data sets available. 

Networks were trained using the generalized delta training rule, commonly known to be 

suitable for large data sets. 
As a result of this research, the feasibility of utilizing neural networks to predict and 

increase the manufacturing yield of semiconductor devices, while reducing the test require- 

ments, is established. These models developed for specific process stages help us evaluate 

predicted characteristics at the input to the next processing step. In-process measurements 

are also used to develop neural network models of yield-limiting characteristics measured 

after wafer fabrication is complete (final stage modeling). These models provide an effective 

tool for early parametric yield prediction, as well as process characterization of process and 

device parameters. 
Fabrication data for this research comes from Material/Device Correlation Database 

(contract#/company name: F33615-88-C-174), cleared for public release on 7/14/1993. 

The data concerns a number of industrial production lines which fabricate GaAs MMIC. 

Measurements available characterize the starting materials and material and device pa- 

rameters at such processing steps as ohmic, gate recess, gate metalization, and final DC. 

Characterizations include doping concentrations, layer thicknesses, planar geometries, layer- 

to-layer alignment, resistivities, and device voltages and currents. Although the results of 

this research are directly applicable to GaAs technology, the methodologies established are 

also valid for other IC technologies, and other applications such as chemical processes or 

other fabrication processes. 
GaAs is a technologically important material because of its properties as a semiconductor 

material. This III-V compound semiconductor has several attractive properties. It has a 

very high electron mobility (5000 cm2/Vs) and high saturation velocity (1.2 • 107cm/s) 

giving it excellent high frequency performance. In addition, its large bandgap permits 

high temperature operation. Gallium arsenide substrates can be grown with very high 

resistivities (106-108fi/cm). This high-resistivity substrate is used as a dielectric medium 

for the device isolation necessary in MMICs [19]. 
GaAs MMIC technology is multidisciplinary, encompassing material, device and circuit 

technologies, circuit design, and fabrication techniques. MMIC circuits are functions of 

a rather complex and multivariate manufacturing process and, therefore, it is difficult to 

properly model device and/or circuit performance. 

Integrated circuit fabrication is expected to produce uniform material and device prop- 

erties over a large wafer area. This uniformity is difficult to achieve for GaAs IC technol- 
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ogy because of material and process deviations. Prom wafer to wafer, as well as within 

a wafer, there are variations of material and process properties which strongly influence 

final device/circuit performance [20]. It is therefore essential that these fluctuations and 

relationships between various process stages are adequately modeled. However, modeling 

is not an easy task, requiring large-scale in-process testing followed by appropriate process 

identification. 
The classic method for extracting the characteristics of semiconductor materials, pro- 

cesses, and devices is to collect data from microelectronic test structures [21, 22]. The data 

used in this research was generated as part of a government research program to study 

the correlation between GaAs materials, process, and device properties. The program em- 

ployed a standard high-density test reticle (chip) for baseline wafer processing by industrial 

foundries. The test reticle provided a high resolution instrument with which to examine 

substrate quality and wafer processing control. Approximately 200 reticles were produced 

per wafer. A standardized set of on-wafer tests were performed on each reticle at different 

stages of the fabrication process. The test structures included an orthogonal array of MES- 

FET pairs, parametric test patterns, and the MMIC standard Process Control Monitors 

(PCM). 
Whole wafer testing was conducted on the substrates and during wafer processing at four 

critical steps: Ohmic or Post-contact, Post-recess, Post-gate, and Final. The majority of the 

characteristics were measured on the 0.5 x 200 micron MESFETs. This test structure/device 

(referred to as device from this point on) is at the center of our modeling effort. 

2.1    Material and Fabrication Process Stages 

A sequence of cross-sections illustrating the critical fabrication stages for the ion-implanted, 

recessed gate MESFET used in this work is shown in Figure 2. The fabrication process uses 

standard photolithography techniques. Material, process, and device characteristics are 

measured after each of these processing steps. A brief discussion of each of these process 

steps, provided below, is helpful to understand the full scope of measurements performed. 

2.1.1    Substrate/Active Layer Stage 

Fabrication of the MESFETs begins with a mechanically qualified semi-insulating GaAs 

substrate. Substrate and active layer characteristics measured at this stage, denoted S, 

include among others such parameters as optical scattering (OBS) and dislocation density 

(EL2), which facilitate prediction of saturated current non-uniformities [23]. 

The active layer is then formed by ion-implantation. This active layer is characterized 

by sheet conductance (Rsh), carrier concentration (Nd), and mobility measurements (MuO, 

Mul).   Variations of these parameters arise, in part, because of strong radial and axial 
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Figure 2: Critical MESFET fabrication stages at which characterization takes place: a) 

substrate/active layer; b) ohmic/post-contact; c) gate recess; d) gate formation. The MES- 

FET geometry does not change from that at post-gate when the final stage measurements 

are taken. 
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Figure 3: Visual representation of substrate electronic absorption, EL2: a) wafer map; b) 

histogram of measured EL2 values. 

variations in thermal gradients during bulk crystal growth which affect local stoictriometry. 

Table 1 (entries 1-10) lists, among others, the S-stage characteristics which are measured 

at the beginning of the fabrication process and after the active layer is implanted. 

Figure 3a shows a typical wafer map of the substrate electronic absorption characteristic 

which is a measure of the neutral deep donor density .(EL2). This figure illustrates the 

radial variation exhibited by the EL2 values. Figure 3b illustrates the spread of EL2 values 

represented by the gray scales of the wafer map. This pattern is somewhat similar for many 

other characteristics making it important to properly model these variational effects on final 

device performance. 

2.1.2    Ohmic/Contact Metal Stage 

Ohmic metalization is next deposited during the ohmic contact stage, denoted C. These 

ohmic contacts, which form the FET source and drain, are attached to test probe pads. At 

this point, the wafer undergoes post-contact characterization. Each C-stage characteristics 

measured after the ohmic contact process stage is listed in Table 1 (rows 11-16). 

C-stage measurements include the MESFET ungated drain-source saturation current (C- 

Idss), drain-source resistance (C-Rds), and the metalization width and resistivities. Map- 

pings of C-Idss, such as that in Figure 4, show that most ion implanted active layers have 

characteristics which vary across the wafer. This typically is the result of the particular 

wafer tilt and rotation during the ion implantation [15]. 
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Figure 4: Visual representation of post-contact drain-source current, C-Idss: a) wafer map; 

b) histogram of measured C-Idss values. 

2.1.3 Gate Recess Stage 

The next fabrication step is the channel recess-etch process step, denoted R. This step is 

intended, in part, to be a fine-tuning adjustment to the FET current. The recess-etch pro- 

cess is a major contributor to wafer variations, as evidenced by post-recess characterization. 

The two R-stage characteristics taken after the gate-recess process step are also listed in 

Table 1 (rows 17-18). 

2.1.4 Gate Metal Stage 

After the gate recess-etch is complete, the gate metal is deposited on the patterned wafer. 

Data taken during the post-gate characterization, G, include the first measurement of com- 

plete FET characteristics (see again Table 1, rows 19-32). These characteristics describe 

FET symmetry and uniformity through parasitic resistances, drain-source current, and 

breakdown voltages. Non-uniformities may occur when the gate metal is deposited. Prob- 

lems arise from, among other things, the photo-resist opening being too narrow, making 

the exact placement of the gate difficult. It is the variation present in these characteristics 

which makes it difficult to accurately model circuit performance. 

2.1.5 Final Stage 

After the gate metal is deposited, the wafer undergoes subsequent processing steps for mak- 

ing interconnections and IC passive components. These are first metal, dielectric deposition, 

silicon nitride passivation, and final plating metalization. Of all these steps, the most sig- 
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nificant is the silicon nitride passivation. In this process, a 2000 Ä thick layer is deposited 

over the entire wafer and then removed by plasma etching from those areas not requiring 

nitride. Wafer passivation affects the FET breakdown voltages, drain current, pinch-off 

voltages, and transconductance. This phenomenon is neither fully understood nor has it 

been yet analytically modeled. 
Upon completion of the fabrication process, the wafer undergoes the final DC charac- 

terization, F. Another complete set of FET characteristics are the measured together with 

several process control parameters, which are listed in Table 2. 

2.2    High Density Test Reticle 

The study of process-induced parametric variations requires an elaborate data collection 

effort. A large and representative number of measurements of process attributes, key device 

parameters, and layout geometries need to be taken during the fabrication process to provide 

a representative statistical database for analysis or interpretation. As a result of this effort, 

trends and correlations due to the fluctuations of the process can be modeled by analyzing 

the population of devices and their resulting electrical parameters. 

The measurement data used for characterization originated from a 4 x 4.5 mm high- 

density test structure reticle (HDTR) repeated some 200 times per wafer. The reticle 

contains an array of the 0.5 x 200 micron MESFET, van der Pauw patterns, transmission line 

models, and standard process control monitor structures. In addition, the reticle has built-in 

redundancy in patterns and locations to reduce systematic and random measurement errors. 

Measurements taken on these test structures are used to study and model the impact of 

material and process variations on device/circuit performance. 

2.2.1 Reticle Description 

The high density material/process evaluation reticle, shown in Figure 5, was designed specif- 

ically to collect the data required for the in-depth analysis of parametric variations. Any 

detailed information about the reticle is restricted by the Arms Export Control Act and will 

not be included as part of this document. We can, however, say it contains a large num- 

ber of test structures and is divided into three basic measurements: DC, RF, and process 

control monitors. 

2.2.2 Characterization Data 

In order to investigate the impact of various GaAs processing practices on the performance, 

uniformity of parameters, and production yield of MMICs, a comprehensive microelectronic 

test structure design must be in place. These test structures must be designed so that the 
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Figure 5: High-density test reticle, HDTR. 

desired characteristic can be accurately measured using automated testing techniques. 

The HDTR was designed to provide measurements of over 200 characteristics. Only 51 of 

these were used for neural network modeling, primarily because of the focus on the MESFET 

device. The characteristics selected are those which are believed to most directly affect 

MMIC performance. Each measurement was taken across the entire wafer at a sufficient 

density to fully characterize the wafer. This data is placed into two general categories: 

MESFET and Material/Process. 

MESFET Characteristics As mentioned before, one of the objectives of this work was 

to model the effect that material and process variations have on the performance charac- 

teristics of active devices used in integrated circuits. The active device is typically where 

the impact of these variations become most evident since it is the major contributor to 

yield loss. Therefore, as mentioned earlier, the MESFET active device is at the center of 
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this modeling effort. The HDTR wafer is well populated with over 1000 MESFETs with 

measurements taken at a density of six per reticle. 

Material/Process Characteristics The fabrication of MMICs involves many complex 

processing steps. The process includes the fabrication of active devices, resistors, capacitors, 

inductors, air-bridges, and via holes for ground connection. Process monitors and paramet- 

ric test structures (PTS) capture variations resulting from these fabrication processes and 

related to the starting GaAs substrate, material, and each metal layer formed. 

2.2.3    Identification Scheme 

The characteristics were measured across the entire wafer in one automated test sweep. 

Figure 6 shows the common reticle overlay on a 3" wafer. Each square represents an 

HDTR. An identification scheme was developed to track the exact location of each test 

structure data point. 
The test probe pads within the reticle shown on Figure 5, number from 1 to 36 in 

the x-direction and 1 to 32 in the y-direction, giving the exact test structure location. 

The reticle itself is numbered XXYY to identify its row and column location on the wafer 

(refer to Figure 6). This reticle layout and the reticle probe pad numbering scheme permit 

precise tracking of the location and identification of all test structures and data points. 

Measurements made at the different processing stages can be identified with the specific 

structure on which the measurement was made. This also allows material/process test 

structure characteristics to be linked with device characteristics within the reticle. This is 

important since many material/process characteristics vary across the wafer, from wafer-to- 

wafer and from lot-to-lot. The site-to-site linkage that this database provides is convenient 

for supervised training of feedforward neural networks. 
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Figure 6: Overlay of a 3" wafer on a grid high-density test reticle illustrating the identifi- 

cation scheme. 
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3    Modeling of Process Stages 

In the initial stage of work we focused on how to model the effect that material and process 

variations have on the performance characteristics of active devices used as components of 

integrated circuits. The performance parameters of active devices determine yield loss due 

to undesirable process variations. Therefore, the MESFET active device modeling and yield 

are at the center of the modeling effort. 

In order to provide a statistical data set for neural network modeling of the process, 

we need a sufficient number of measurements of process attributes, device parameters, 

and layout geometries taken during the fabrication process. Data selection is initiated by 

choosing a representative data sample from a 4 x 4.5 mm HDTR repeated some 200 times per 

wafer. The reticle includes an array of 0.5 x 200 micron MESFETs, resistors, transmission 

line models, and other standard process control monitor structures. Moreover, there is 

a redundancy in the locations of the devices in order to reduce systematic and random 

measurement errors. For details of the data selection methods refer to [5]. 

A computer program denoted as Wtab (Wafer Table), developed during the initial phase 

of this work, was used to extract requested data from the database. See Appendix 8.1 for 

more details on Wtab. The following stages of the GaAs IC fabrication process were selected 

for device modeling: Substrate (S), Contact and Gate-Recess (GR), Gate metal (G), and 

Final (F). Training files were created from the master measurement data for each of the 

fabrication process stages S, CR, G, and F. The names of these data files, referred to as 

"characteristics", together with file identifiers, corresponding units, and brief descriptions 

are shown in Tables 1,2, and 3. Selection of training files of a manageable size was desirable 

to train neural models in an efficient manner. Accordingly, a horizontal slice of 14 reticles 

across the middle of the wafer was chosen for training purposes. The 14 reticles at a 

density of 6 MESFETs per reticle provided 69 data vectors after discarding nonfunctional 

MESFETs, of which 50 were used to train neural networks and 19 were set aside for testing. 

Yield estimation usually takes place after the final processing stage. The yield limiting 

device characteristics are compared to the target values, and the quality of the devices is then 

determined. Therefore, for design centering purposes, F-stage models need to be considered. 

Generally, parametric yield is found by determining whether the measured values of critical 

final performance parameters fall within a pre-determined tolerance range around the target 

value of each parameter. This can involve screening of F-stage DC device parameters, such 

as saturated drain current F-Idss, transconductance F-Gm and pinch-off voltage F-Vpo. 

Accurate estimation of parametric yield during the manufacturing process relies on the 

ability to predict the effect of material and process variations on device parameters. The 

neural network models described in the following sections allow for achieving this goal. 
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3.1    The SCRG-F Model 

The computer program which implements the multilayer perceptron neural network, de- 

noted as DES-PREP was developed as a part of the software package DESCENT. A user's 

manual and brief description of the program is included in Appendix 8.4. Architectures of 

neural networks used in this work were determined experimentally by varying the number 

of hidden neurons and selecting the number which resulted in the lowest testing error. By 

monitoring the learning profile on the testing data, the neural models were trained for their 

best generalization ability [24]. 

The SCRG-F network models the relationships between many characteristics measured 

throughout the entire IC fabrication processes S, CR, and G, and the final characteristics F. 

This model employs 32 inputs as listed in Table 1 and 19 outputs listed in Table 2. Twenty- 

two neurons were used in the network hidden layer. Many of the same characteristics 

measured at early stages are measured again at the final stage since these characteristics 

change in value as the fabrication process progresses. 

Once the training is completed, the model was tested and evaluated for its ability to 

learn the mapping resulting from the underlying data. The modeled values were compared 

to the actual measurements in scattering plots as shown in Fig. 7a and 7b. All 19 output 

characteristics are shown in the same chart as various symbols listed in Table 2. Fig. 7a 

represents results of the training which was terminated as the testing error reached a mini- 

mum. This prevented the network from over-fitting to the training data, which would have 

affected the resulting model's generalization ability. Scattering plot of the testing data, 

shown in Fig. 7b, indicates a somewhat larger error (points distant from a diagonal line) as 

compared to scattering plot for the training data, which is typical for neural models. The 

testing error has been reduced by careful selection of the network architecture. Thorough 

evaluation of the Person product-moment correlation for the SCRG-F model is included 

in [5]. The resulting weights of the neural network for SCRG-F model is presented in 

Section 8.3 of the Appendix. 

An alternative training method was also investigated to produce a SCRG-F model use- 

ful for design centering. The input SCRG data was first analyzed for principal components 

distribution and then linearly transformed prior to input to the neural network. The Prin- 

cipal Component Analysis (PCA) is described in more detail in Section 5.2. Results of this 

training method are shown in Fig. 8a and 8b in the form of scattering plots for comparison 

with the standard training technique. Comparing these results with those shown in Fig. 7 

that models with the PCA input data preprocessing train to a lower error level. Other 

benefits from using the PCA in modeling will be evident later in Chapter 6. 
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Characteristic File identifier Unit Description 

1 OBSA s04sua Substrate optical scattering angle A 

2 EL2 slOsun _9 cm z Substrate neutral deep donor density 

3 OBSB s04sub Substrate optical scattering angle B 

4 Rho s05sun O-cm Substrate resistivity 

5 MuH s06sun cm2/V-cm Substrate Hall mobility 

6 ns s07sun cm-3 Substrate carrier concentration 

7 Nd f44ffn cm-3 Peak doping concentration 

8 ETA f46ffn % Fatfet implant activation 

9 MuO f49ffn cm2/V-cm Drift mobility (Vg=0) 

10 Mul f50ffn cm2/V-cm Drift mobility (Vg=-1.5V) 

11 C-Idss c21rfv mA/mm Post-contact Idss 

12 C-Rds c22rfv fi-mm Post-contact Rds 

13 C-Rc c41tln f2-mm Contact resistivity 

14 C-Rsh c42tln fi/sq Contact metal sheet resistance 

15 O-Rsh o42cbn fi/sq Ohmic metal sheet resistance 

16 O-W o52cbn fim Ohmic metal layer width 

17 R-Ids r21rfv mA/mm Post-recess Ids 

18 R-Rds r22rfv fi-mm Post-recess Rds 

19 G-Idss g21rfv mA/mm Post-gate Idss 

20 G-Rds g22rfv fi-mm Post-gate Rds 

21 G-Rgs g23rfv Q-mrn Post-gate Rgs 

22 G-Rs g24rfv fi-mm Post-gate Rs 

23 G-Rdg g25rfv fi-mm Post-gate Rdg 

24 G-Rd g26rfv Q-mm Post-gate Rd 

25 G-Vbdg g29rfv V Post-gate G-D breakdown voltage 

26 G-Vbgs g30rfv V Post-gate G-S breakdown voltage 

27 G-Vpo g31rfv V Post-gate pinch-off voltage 

28 G-Gm g32rfv mS/mm Post-gate transconductance 

29 G-Ids-pk g33rfv mA/mm Post-gate peak Ids 

30 G-AL g57eav firm Gate metal electrical alignment 

31 G-Rsh g42cbn fi/sq Gate metal sheet resistance 

32 G-W g52cbn //m Gate layer width 

Table 1: The SCRG characteristics list. 
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Characteristic File identifier Unit Description Symbol 

F-Idss f21rfv mA/mm Final DC Idss o 

F-Rds f22rfv ß-mm Final DC Rds + 
F-Rgs f23rfv Jl-mm Final DC Rgs □ 
F-Rs f24rfv fi-mm Final DC Rs X 

F-Rdg f25rfv fi-mm Final DC Rdg A 

F-Rd f26rfv J7-mm Final DC Rd * 

F-Vbdg f29rfv V Final DC G-D breakdown voltage o 

F-Vbgs f30rfv V Final DC G-S breakdown voltage + 
F-Vpo f31rfV V Final DC pinch-off voltage □ 
F-Gm f32rfv mS/mm Final DC transconductance X 

G-Ids-pk f33rfv mA/mm Final DC peak Ids A 

Lg f511gv //m Gate length * 

C f55ctn pF MMIC capacitance o 

i-Rsh i42cbn Q/sq Interconnect sheet resistance + 
i-W i52cbn /an Interconnect metal layer width □ 
p-Rsh p42cbn fi/sq Thin film sheet resistance X 

p-W p52cbn /xm Thin film layer width A 

BH f54dsv Barrier height * 

BG f58bgv Vertical backgating percent change o 

Table 2: The F characteristics list. 
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Characteristic File identifier Unit Description Symbol 

OBSA s04sua Substrate optical scattering angle A 

EL2 slOsun cm-2 Substrate neutral deep donor density 

OBSB s04sub Substrate optical scattering angle B 

Rho s05sun f2-cm Substrate resistivity 

MuH s06sun cm2/V-cm Substrate Hall mobility 

ns s07sun cm-3 Substrate carrier concentration 

Nd f44ffn cm-3 Peak doping concentration 

ETA f46ffn % Fatfet implant activation 

MuO f49ffn cm2/V-cm Drift mobility (Vg=0) 

Mul f50ffn cm2/V-cm Drift mobility (Vg=-1.5V) 

C-Idss c21rfv mA/mm Post-contact Idss 

C-Rds c22rfv fi'imn Post-contact Rds 

C-Rc c41tln fi-mm Contact resistivity 

C-Rsh c42tln fi/sq Contact metal sheet resistance 

O-Rsh o42cbn fi/sq Ohmic metal sheet resistance 

O-W o52cbn /jm Ohmic metal layer width 

R-Ids r21rfv mA/mm Post-recess Ids 

R-Rds r22rfv fi-mm Post-recess Rds 

G-Idss g21rfv mA/mm Post-gate Idss 

G-Rds g22rfv fi-mm Post-gate Rds 

G-Rgs g23rfv Q-mm Post-gate Rgs 

G-Rs g24rfv fi-mm Post-gate Rs 

G-Rdg g25rfv fi-mm Post-gate Rdg 

G-Rd g26rfV fi-mm Post-gate Rd 

G-Vpo g31rfv V Post-gate pinch-off voltage 

G-Gm g32rfv mS/mm Post-gate transconductance 

F-Idss f21rfv mA/mm Final DC Idss o 

F-Rds f22rfv Jl-mm Final DC Rds + 
F-Rgs f23rfv fi-mm Final DC Rgs □ 
F-Rs f24rfv Q-mm Final DC Rs X 

F-Rdg f25rfv Jl-mm Final DC Rdg A 

F-Rd f26rfv fi-mm Final DC Rd ■£• 

F-Vpo f31rfv V Final DC pinch-off voltage o 

F-Gm f32rfv mS/mm Final DC transconductance    + 

Table 3: The S, CR, G and F characteristics list. 
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3.2    The S-F, CR-F, and G-F Models 

To gain an improved insight into these partial fabrication processes, three models of the 

F-stage DC characteristics were developed with each model having an input representing 

a different stage of the fabrication. The three models are used to compute the values of 

F-Idss, F-Gm, and F-Vpo, as well as the other F-stage characteristics as shown in Table 3. 

The model inputs, also listed in Table 3 as the first three parts, will be used for the process 

yield estimation. Models have 10, 8, and 8 inputs, for the S, CR, and G stages, respectively. 

Each of the models has 22 hidden neurons and 8 outputs each corresponding to the eight 

F characteristics.   They were trained, tested, and evaluated in the same manner as the 

SCRG-F model. 
Figures 9, 11, and 13, respectively, show scattering plots of training and testing results 

for these models. The PCA models were also prepared for these stages, and evaluation 

results are shown in Figs. 10, 12, and 14, respectively. As can be seen from comparisons 

of scattering plots, PCA pre-processed input data also yield better identification results for 

the S, CR, and G stages. Neurons with symmetric activation function tanh(net/2) were 

employed in the networks, and the neuron input, net, was evaluated with a bias unit equal 

to -1 [24]. Neural network weights developed for the S-F, CR-F, and G-F models are listed 

in Section 8.3 of the Appendix. 
It can be noticed that among these three models, the single G-F stage model works with 

the lowest error for the testing data, and thus is considered as the best among the identified 

models. 
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Figure 7: The SCRG-F non-reduced model: scattering plots for (a) training data, (b) testing 

data. 

b) 

Figure 8:  The SCRG-F non-reduced PCA pre-processed model:  scattering plots for (a) 

training data, (b) testing data. 
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Figure 9: The S-F non-reduced model: scattering plots for (a) training data, (b) testing 

data. 
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Figure 10: The S-F non-reduced PCA pre-processed model: scattering plots for (a) training 

data, (b) testing data. 
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Figure 11: The CR-F non-reduced model: scattering plots for (a) training data, (b) testing 

data. 

a) b) 

Figure 12: The CR-F non-reduced PCA pre-processed model: scattering plots for (a) train- 

ing data, (b) testing data. 
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b) 

Figure 13: The G-F non-reduced model: scattering plots for (a) training data, (b) testing 

data. 

b) 

Figure 14: The G-F non-reduced PCA pre-processed model: scattering plots for (a) training 

data, (b) testing data. 
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4    Analysis of Sensitivity for Various Inputs 

It is often very difficult to model the composite effect that material variations and fabrication 

process fluctuations have on the overall performance of the active device and/or circuits. 

Therefore, some form of factor analysis of the model becomes important for process and 

design optimization. 
In part, factor analysis involves conducting a sensitivity analysis to determine which 

inputs of the model are most critical (sensitive) in determining the fabrication outcome. 

After identifying the sensitive parameters, special attention is given to the fabrication pro- 

cesses so that these parameter values may be better controlled. The advantage of sensitivity 

analysis over conventional modeling methods is the potentially useful information it makes 

available to the user. Monte Carlo methods can predict large variations in the output but 

will not provide insight as to why these variations occur. Sensitivity analysis specifies which 

output parameters are most affected by process fluctuations, process parameters, and/or 

process stage or stages for which they are most sensitive. 
In addition, sensitivity analysis allows for the identification of irrelevant input parame- 

ters. This in turn may reduce the number of test parameters that will provide the quality 

of the modeling, thus leading to the possible elimination of certain test requirements [25]. 

Publications related to this project describe in more details techniques for performing 

sensitivity analyses on trained feedforward neural networks [26, 27, 28]. The sensitivities 

in question are computed by analyzing the total disturbance of network outputs due to 

perturbed inputs. They express the average norms of incremental output variations due to 

the disturbance of each input and indicate sensitive inputs. 
Using the sensitivity analysis, sensitivity relationships are computed for the yield models 

obtained in this research. Specifically, a sensitivity analysis of the parametric yield models 

developed in Section 4.3 was performed. Additionally, sensitivity results were evaluated in 

an attempt to perform network pruning. 

4.1    Sensitivity Calculation 

The sensitivity of a trained MPNN output, ofc, with respect to its input, xu is defined in [26] 

as 

S°* = ^ (1) 

which can also be written as 

Ski = S% (2) 
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By using a commonly adopted notation for the multilayer feedforward architecture [24], the 

derivative (1) can be expressed as 

lH'(^#-t (3) 

where yj denotes the output of the j-th neuron in the hidden layer and f'(netk) is the value 

of the derivative of the activation function o = /(net) with respect to net at the k-th output 

neuron. Expanding (3) further yields 

%± = f(netk)Ylvkjf'{vetj)v,ji (4) 

where /'(netj) is the value of the derivative of the activation function y = /(net) of the 

j-th hidden neuron (y'j = 0 since the J-th neuron serves only as a bias input to the output 

layer). The (K x I) sensitivity matrix S, consisting of entries as in (4) is now expressed 

using matrix notation as 

S = O'VY'W (5) 

where V (K x J) and W (J x I) are the output and hidden layer weight matrices, respectively, 

and O' (K x K) and Y' (J x J) are diagonal matrices defined as 

0' = diag{o'1,o'2,...,o'K) (6) 

Y' = diag(y[,y'2,...,y'j) (7) 

As can be seen from (5), the sensitivity matrix S depends not only on the network weights 

but on the slopes of the activation functions of all neurons as well. Therefore, each training 

vector x^ in the training set produces a different sensitivity matrix S^. This is because 

although weights of a trained network remain constant, the activation values of neurons 

change across the set of training vectors. This produces different diagonal matrices O' 

and Y' which strongly depend upon the neuron operating points as determined by their 

activation values. 
Since each training vector produces a different sensitivity matrix it is necessary to mea- 

sure the sensitivity over the entire training set. This is accomplished in [27, 28] by computing 

the mean square average sensitivities defined as 

{Ski) = 

where P is the number of patterns in the training set. 
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The average sensitivity matrix entries defined in (8) provide useful information as to 

the importance of each input to the computation of each of the outputs for a known well 

trained feedforward neural network. A small value of (Ski) in comparison to others means 

that for the particular fc-th output of the network, the i-th input does not significantly 

contribute to output k. A high value of (Ski) in comparison to the others means the i-th 

input does contribute significantly to output k. In order to distinguish between inputs with 

high and low importance the sensitivity measures derived from matrices (Ski) relative to 

all outputs need to be sorted in descending order. Inspection of this ranking allows for the 

determination of inputs which affect the output least. 

4.2    Sensitivity Analysis of Yield Models 

The perturbation-based sensitivity analysis [28] was performed on each of the MPNN yield 

models developed and described in Chapter 3.2. The sensitivity measure, (Ski), of each 

input for each output was computed over the training set for the S-F, CR-F, and G-F 

MPNN models. 

4.2.1    S-F Model 

The sensitivity measures (Ski) for the S-F MPNN model were computed and are depicted 

in Fig. 15. The most significant input for all output characteristics is clearly Mul, while 

MuO consistently ranks near the bottom. This result was not unexpected because the active 

layer mobility measurements were taken at different operating bias points, that is, Vgs = 

-1.5 V and Vgs = 0, respectively. The Mul mobility measurement test voltage is very 

close to the actual test bias voltage of the MESFET when the final stage characteristics 

are measured. Most of the output characteristics also exhibit high sensitivity to the inputs 

Nd and ETA. The peak doping density is a measure of the impurity concentration in the 

MESFET conductive channel formed during ion implantation. After ion implantation the 

wafer undergoes annealing to activate the implanted impurities. ETA is a measure of this 

impurity activation. 
These results confirm practical clues known by process engineers. It has long been rec- 

ognized that these characteristics are major factors, of equal importance, when considering 

final device performance. The S-F MPNN sensitivity measures confirm the importance of 

these characteristics and emphasize the necessity of taking the measurements to qualify the 

active layer material. As can be seen from the figure, none of the inputs to the S-F model 

exhibit negligibly small sensitivity measures across all outputs. 
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Figure 15: Sensitivity measure {Ski) of each input for each output of the S-F model. 

4.2.2 CR-F Model 

Fig. 16 shows a bar chart showing the computed {Ski) values for the CR-F model. As 

expected, the drain-source currents and resistances C-Idss, C-Rds, R-Idss and R-Rds are 

extremely important for the computation of the current related outputs (F-Idss, F-Rds, and 

F-Vpo), as is the ohmic metal sheet resistance, O-Rsh. It is unclear as to why the R-Idss 

and R-Rds inputs are not quite as important as C-Idss and C-Rds. It could be that the 

variations associated with the R-stage were not represented as well as the C-stage variations 

in the horizontal crossectional data used in training. 

As expected, the materials-related characteristics contribute the most to MESFET par- 

asitic resistances, although some also influence all output characteristics. For each given 

output there are relatively large differences among the individual inputs. 

4.2.3 G-F Model 

The G-F MPNN model's sensitivity measures are shown in Fig. 17. The current related 

outputs for the G-F model exhibit similarly high sensitivity measures as for the CR-F 

model. There is, however, a noticeable decrease in the sensitivity measures for the G- 

Vpo characteristic. As observed for the other models, the importance of each G-F input 

parameter varies from output to output. With the exception of G-Vpo, there are no input 

parameters that consistently rank very low in terms of the sensitivity measures for every 

output. This appears to be a good indicator that most of the inputs chosen for developing 
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Figure 16: Sensitivity measure (Ski) of each input for each output of the CR-F model. 

process models do have some significance in the determination of the outputs. This also 

gives credibility to the design of the HDTR. The test structures and the characteristics they 

measure have significance in determining the outcome of the final MESFET characteristics. 

4.3    Reduction of Test Requirements through Network Pruning 

One of the goals associated with these sensitivity analyses is to identify input parameters 

which may be pruned from the input vector because of their lack of influence on the output 

parameters. The concept was to reduce cost by reducing the number of test parameters 

required to provide the level of characterization necessary to implement IC process modeling. 

In addition, deleting irrelevant data components would lead to smaller networks due to the 

reduced size of data vectors, thus resulting in computational savings. 

Criteria for pruning input parameters were developed in the literature [28] along with 

the sensitivity approach used here. The criteria for determining which inputs can be pruned 

are based on the so-called 'gap' method. The sensitivity measures of the inputs for a specific 

output are ranked in sequence in descending order. The gap is defined as the ratio between 

two neighboring terms in the sequence. By examining these gaps across all outputs, a 

heuristic procedure can determine whether the gap associated with a given input is large 

enough to justify pruning [28]. 

As a result of evaluation of the computed gap ratios, it was determined that none of 

the inputs exhibited a gap large enough to fully justify input parameter pruning. This was 
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Figure 17: Sensitivity measure (Ski) of each input for each output of the G-F model. 

not surprising considering the manner in which the sensitivity measure of each input varied 

widely from output to output for each model. 

4.4    Sensitivity Analysis for Yield Enhancement 

So far the discussion has primarily centered on whether or not a particular input made 

a significant contribution to a modeled output. When considering sensitivity analysis for 

yield enhancement, a given output is examined to determine the input parameters for which 

it is most sensitive. 
Design engineers routinely use sensitivity analysis to check the robustness of a design 

to selected features of fabrication processing. Circuit elements that are likely to be critical 

to production yields are randomly altered to study the variational impact on final circuit 

performance. If a foundry's tolerance is 5% for a specific parameter, the designer will vary 

the parameter 5% to estimate the impact on yield. To fully exploit sensitivity analysis, 

all of the parameters in a design should be examined. The full analysis becomes tedious, 

however, and a standard automated method is required. 

Multivariate treatment of statistical analysis is practical provided two simplifying as- 

sumptions are made: variables are statistically uncorrelated, and variables obey Gaussian 

distributions. As discussed earlier, the first assumption is not fulfilled for FET parameters 

which do, for physical reasons, show correlations. 
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5    Design Centering and Yield Maximization Approach 

As discussed in preceding chapters, VLSI microfabrication process can be described by its 

input and output characteristics that are captured in available measurement data. Each 

data point reveals the input/output relationship resulting from the material and the tech- 

nology. This allows for fabrication process identification. Prom the viewpoint of analysis, 

measurement data collected at various locations of a wafer are regarded probabilistically as 

random events and are characterized by the respective input and output variable distribu- 

tions. Thus, let x and y be the input and output random variables in the form of an n-vector 

and m-vector, respectively, with the assumption that there are n input characteristics and 

m output characteristics for the given stage. 
The relationship between x and y can be formally expressed as a function fi that maps 

input characteristics data into the output characteristics data: 

y = li{x) (9) 

A center value xc is to be maintained at the input in order to achieve a specific, required 

output (target value) y0 as a result of the fabrication stage process. However, due to the 

random distribution of the fabrication factors, equipment imperfection and fluctuation of 

process settings and material properties, the actual x is typically randomly distributed 

around xc. When many input factors are involved and many fabrication cases considered, 

the random spread can be approximated by a Gaussian distribution with the mean xc and 

covariance matrix Cx. The input distribution thus reads 

p(x, xc) = N(xc, Cx) (10) 

Here, p(x, xc) represents the actual distribution of input values x when attempting 

to maintain the center value xc. Entries in vector x are typically expected to correlate 

to some extent with each other. This is manifested by non-zero off-diagonal entries in 

the covariance matrix Cx. Moreover, the technology-related spread of characteristics is 

assumed to be beyond control. Only the center input value xc can be set when targeting 

at the desired output y0. 

The goal of design centering in the fabrication process is to maximize the final product 

yield by choosing optimum settings of the input parameters. The output characteristics 

are then expected to produce a given target value and the largest number of manufactured 

products which fit within the tolerance limits. Assume that the product is acceptable if 

the target output value yQ is manufactured with tolerance 6y. Define the target set uy as 

follows: 

Uy = {y. Vimin <Vi< 2/imax} (U) 
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Figure 18: Projection of a target and tolerance region into the input space of the model. 

Thus, each output y» must belong to the region bounded by yimin = (1 - 5yi)y0 and 

2/imax = I1 + svi)yo- The co^P* of the output tolerance region ujy is roughly illustrated 
in Fig. 18 for n = m = 2. Formally, the process yield can now be characterized by the 

probability Pr(y € uy). Since this probability is to be maximized and the only input 

parameter that can be controlled is the center input value xc (assuming there is no control 

over input factors distributions), the definition of the design centering task now takes the 

following form: 

max Pr(y € uy) (12) 

Equation (12) provides a functional for optimization. Maximizing this functional is 

equivalent to maximizing the process yield. Note that input and output distributions are 

related through equation (9) as determined through experimental data. The optimization 

at the input side starts at point x0 (see Fig. 18) which satisfies /x(x0) = y0- The result of 

this process is a final point xc which fulfills expression (12). Since generally /z(xc) ^ Vo 

due to the nonlinearity of function //, maximizing the functional (12) requires a multi-step 

computational solution for a multidimensional inverse problem. 

5.1    The Approach 

Typically, when creating a model of a stage, many measurements are taken of relevant pro- 

cess factors or characteristics. Many of the inspected characteristics are often related to 

each other due to their mutual correlations. Also, design centering is essentially an opti- 

mization process. It will involve all of these input factors and their mutual dependencies. 

Since optimization in a multidimensional space is both difficult and time consuming, espe- 

cially when nonlinear process models are involved, the optimization space dimension is first 

reduced by using the mutual correlations. By reducing the input space dimensionality, opti- 
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Figure 19: Modeling the microfabrication stage. "N" denotes normalization step, whereas 

"R" denotes denormalization. 

mization algorithms can be used more efficiently while computational complexity is reduced 

to a lower level. The approach presented below has been first introduced in [29, 30]. 

The entire fabrication process model can be assumed to consist of two components: PCA 

and the neural network modeling through MPNN. Knowing both components, relationships 

can be calculated in both directions, i.e., from the input to the output and from the output 

to the input. Thus four separate operations are required to solve the design centering 

problem. The intermediate variable u, referred to as an "abstract variable", represents the 

normalized and compressed space in which the design centering will be implemented. 

The detailed overall block diagram of the fabrication stage which corresponds to the 

approach detailed in the paragraph above is shown in Fig. 19. The figure is an expanded 

version of Fig. 1. In the forward direction, the output sample u is to be computed from 

input data sample x by using the PCA operator that projects x into u, and followed by 

the neural network mapping u-^y. Given the desired output value y0, the corresponding 

variable u0 (if it exists) can be computed by an iterative search for the solution using the 

inverse of the neural network mapping [31, 32]. Subsequently, the corresponding input x 

can be found by using the inverse PCA operator. 

5.2    Principal Component Analysis 

Principal Component Analysis (PCA) of input characteristic measurements is primarily 

needed in order to reduce the model input dimensionality [33]. As indicated in Fig. 19, the 

original input data x is transformed into u by PCA which is both preceded and terminated 

by normalization stages marked "N". The input normalization Nl of x is necessary to unbias 

the raw input data and balance their scaling. After this step all inputs have zero mean and 

unit variance. The PCA then changes basis vectors for input variable representation, and 

typically reduces dimension from n to m, where m < n. Also, the transformed data u 

becomes uncorrelated as a result of the PCA. Additionally another normalization denoted 

as N2 equalizes the variance of each variable. The resulting data representation, referred to 

as u, is a random variable composed of m entries Ui which have zero crosscorrelation and 

their variances are equal to 1. This property substantially simplifies the design centering 

task described below. The following is the analytical description of variable transformation 

x —> u. 
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The input data is characterized by means (xi) and standard deviations axi. Prior to the 

PCA, normalized input x is calculated at Nl using the following equation: 

&. = x* ~ <**> (13) 

The resulting variable x now has zero mean and unit variance at each component xt. 

Subsequently, the autocorrelation matrix R is calculated as follows: 

R = (xxT) (14) 

In order to compute the PCA operator, the eigenvectors of matrix R must first be found. 

Let vk be an eigenvector of matrix R, and Xk its corresponding fc-th eigenvalue such that 

they yield the equation: 

Rvk = XkVk,        k = l,...,n (15) 

Additionally, let eigenvectors vk be orthonormal so the norm v\vk = 1 for each of the 

eigenvectors. It is also beneficial to introduce a descending order of eigenvalues, such that 

Afc > Afc+i. 
Eigenvectors vk span a new basis for the input data representation. A PCA operator 

matrix M will now be defined to transform input x into its projection ü in the new basis. 

Grouping the first m eigenvectors with the largest eigenvalues in a rectangular m x n matrix 

M yields: 

M=[v1,v2,...,vm]T (16) 

which has the property that MMT = I. Matrix M will be used below as the PCA operator 

which transforms input x into vector u: 

u = Mx (17) 

The new data points ü belong to an m-dimensional space which is reduced as compared 

to the original input space. In addition, data points ü are now uncorrelated, which can be 

expressed by {üüT) = A, where A is a diagonal matrix with entries Afc, k = 1, ... ,m on 

the diagonal. In other words {üküf) = Xk if k = I and (üku[) = 0 if k + I. This means 

that ü belongs to the m-dimensional distribution and \k is a variance of the fc-th variable 

in this distribution. Note that Afc is also a variance of the data points x projected onto the 

direction of the eigenvector vk which represents the fc-th principal direction of the input 

data distribution. 
Since entries uk are typically characterized by different variances, another normaliza- 

tion step can simplify the data analysis.   Denote the normalized data points by u.  The 
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normalization in this step (N2) is simple and reads: 

uk = —fx=ük (18) 

In summary, by utilizing equations (13), (17), and (18), each input data point x can be 

transformed into point u in the new, reduced space. The new data representation has the 

property {uuT) = I, making it suitable for design centering algorithms. Each point u can 

be inversely transformed to the original input space with a controlled degree of accuracy 

depending on the dimension m. Let B be the inverse PCA transformation operator 

B = MT (19) 

Due to the dimension reduction performed by the operator M in (17), point x and the 

inversely obtained point BMx are not identical if m < n. Let us define an error of data 

representation in the reduced space related to the model input as a difference between the 

original point x and its representation: 

e = x - BMx (20) 

It may be shown [34] that the average squared error ||e||2 equals the sum of all eigen- 

values associated with the eigenvectors not included in the PCA operator matrix M: 

lell2 = (eTe)=   £   Xk (21) 
k=m+l 

The error norm ||e||2 as in (21) can be used in computing and controlling the effective 

new dimension m of the data in the transformed u space. After scaling with respect to the 

largest eigenvalue, the error can be considered as a percentage of the maximum variance Ax 

that the input data has along the distribution's principal direction: 

A% = f   £   Afc (22) 
fc=m+l 

Note that this error is related to the PCA only and is a part of the total error of the 

fabrication process model. 

5.3    Inverse Projection through Neural Model 

As mentioned, the mapping x -> y represents the process and is generally a continuous 

nonlinear vector function. The PCA component, however, of the entire model is a linear 

transformation. Hence, a function approximator has to be used to complete the task of 

modeling the fabrication process.   An MPNN [24] is used for this purpose.   Additional 
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normalization and renormalization steps need to be done at the network input and output 

to enable the network to learn the stage characteristics. Classic error backpropagation 

training of a two-layer architecture has been found sufficient to train the neural network. 

For the sake of finding an input u0 given the target output y0 through the neural model, 

the algorithm introduced in [31] will be used. Define the solution error £asa norm: 

E = \\y-y0\\2 (23) 

The error gradient dE/du will enable an iterative search in the u space for a solution 

corresponding to the desired output yQ. The gradient entries read: 

|E=E|£% _m (24) 

duk     *-J oyi duk 

Using (24) u can be evaluated iteratively according to the steepest descent method: 

u'i = Ui- K-^— (25) 
dui 

where constant K > 0 controls the algorithm convergence rate [35]. Using this approach we 

can iteratively find the u = u0 variable corresponding to the target output y0. 

5.4    Optimization Algorithm 

The solution to expression (12) will be searched for in «-coordinates since they represent 

an orthonormalized space for the input data distribution with a reduced dimension. Region 

ujy represents all acceptable output variable values resulting both from the tolerance and 

target point requirements as defined in (11). Define region UJU such that implication (u € 

u)u) =4> (y € ojy) is valid. In other words all the points u which belong to the region tou 

will result in acceptable output values y — f{u). Note that the output space dimension is 

greater than m-therefore the inverse implication does not necessarily hold true. Under the 

assumptions made, the following probabilities are equal: 

Pr(y G uy) = Pr(w G uu) (26) 

Since the variable u space is orthonormalized, the data points distribution can now be 

represented by a symmetric m-dimensional Gaussian p(u, uc) centered at some uc that will 

be searched for during the optimization process: 

p(u, uc) = N(uc, a) = ^=^-e-^^ (27) 

Here a equals 1 and is used later for further purposes, and ||u - wc|| is a norm of a 

distance between the variable u and the center point uc. The design centering will provide 
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some value for uc that will be considered as a solution xc when transformed back into the 

input space. 
Denote the yield probability as pc. In the u-space it can be described by the integral: 

pc = Pr(u eoju)=  I   p(u, uc)du (28) 
JoJu 

Now assume that the space is uniformly covered by random points Uk, as shown in 

Fig. 20. The point neighborhoods sk combined together fill the entire space. The points 

belonging to the region uu create set <5 such that the volume of uu equals VWu = J2ke5 sk- 

If the number of points is sufficiently large, the probability pc can be approximated by the 

following sum: *ö ' 

Pc = ^skp{uk,uc) (29) 
kea- 

The goal of design centering now becomes equivalent to maximizing probability pc by 

moving the center point uc such that (30) is fulfilled 

max pc (30) 
Uc 

The solution to (30) is a point u*c that could be found as a result of an optimization 

algorithm with the functional pc. Define the gradient of pc that will be useful for this 

algorithm: 

c      keS 

Gradient (31) indicates the direction toward which the center point uc should be moved 

in order to increase the yield probability pc. At the solution u* the gradient is zero: 

dpc 
duc 

= 0 (32) 
uc=u' 

Figure 20: Approximating the yield probability. 
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Figure 21: Movement of the solution with respect to a. 

Generally, this gradient can be zero at more than one point; however, each of these 

points may or may not represent the global solution of maximum probability pc. Assume 

that the optimization algorithm is used in the neighborhood of the global solution at this 

stage. The following simple gradient-based optimization algorithm is proposed: 

?£ = P;       uc(0) = u0 (33) 
at       duc 

Regarding uc as time variable uc = uc(t) with initial condition tt0, the differential 

equation has a fixed point at u* satisfying equation (32). As long as the initial condition is 

in the neighborhood of the global solution, the proposed algorithm will generate a trajectory 

uc(t) that leads from u0 to u*. Refer to Fig. 21 for explanation of the fixed point concept. 

Intuitively, choosing u0 such that f(u0) = y0 brings uc close to it*. This would work 

perfectly if / was linear, but is sufficient for a nonlinear / with the properties of smoothness 

and monotonicity resulting from the fabrication processes. 
The need to evaluate terms at every point k in the algorithm described by (33) is a 

distinct disadvantage. Although dimensionality of the tt-space is reduced due to PCA, the 

algorithm can still be computationally inefficient. The efficiency can be improved by the 

following redefinition: Note that ^ = -^(1 -pc). Probability (1 - pc) represents points 

that miss the target region and can be used by the algorithm as well: 

^E«**.«^^;»«*--»' (34) 

By now a was treated as a unit constant. However, during the optimization a can be 

slowly varied, and the result u*c will be the same provided that the final value of a is 1. Let 

a be the parameter which slowly changes from some small initial value CTQ, up to 1 at the 

end of optimization. Perturbing a will affect the solution u* which now becomes a function 

of a: 

u*c = u*c(a) (35) 

Parameter a can be used to control the number of points affecting location of the solution. 
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6    Results of Yield Maximization for Stage-to-Final Models 

The conceptual framework, introduced in Chapter 5, was implemented to achieve the yield 

enhancement in the MESFET fabrication process. Prior to design centering, the neural 

models of SCRG-F, S-F, CR-F, and G-F process stages were developed using DES-PREP 

program from the DESCENT software package. The models employ the PCA data pre- 

processing. Eigenvalues of the autocorrelation matrix of the input data characteristics 

distribution correspond to variances of the data spread in principal directions. By ana- 

lyzing the variances, dimensionality reduction from n to m was made possible. Although 

the dimension reduction can potentially contribute to an error in solution for the centering 

problem, the entire approach to effective yield enhancement was found successful and it 

enabled optimization of the centering process. 

The yield is estimated by comparing the modeled F-stage characteristics values with the 

tolerance ranges. If the value falls within that range, the yield test is considered as passed; 

if not, as failed. The tolerance ranges are defined as deviations allowed for respective 

characteristics around their target values. With the use of DES-CENT programs, desired 

values for SCRG, S, CR, and G characteristics were found for assumed tolerances and then 

the process yield was estimated for the new center values of these characteristics. Numerical 

simulations indicated that the yield can be significantly improved as compared with simple 

inversion without corrective design centering. 
Our approach was based on the assumption that the underlying data models sufficiently 

characterize the fabrication stages and the relationships captured by the models are valid 

throughout the entire IC manufacturing process. 

6.1    Model Analysis 

The analysis of the measurement data used for building stage models from the perspective 

of further design centering was the first step in this work. Fabrication process identification 

becomes more reliable if dependencies between characteristics are better understood. Since 

the measurement process involves randomness, all the collected data needs to be regarded 

as a set of probabilistic distributions. Moreover, the characteristics describe the same 

fabrication process so it is reasonable to expect the mutual correlation of the distribution. 

For these reasons the input data of each model stage was first investigated through an 

autocorrelation matrix (14) by means of its principal components. 

Four process models: SCRG-F, S-F, CR-F, and G-F, introduced in 3.1 and 3.2 were 

considered in this project. The input characteristics, listed previously in Tables 1 and 

3, describe various process parameters and as such they differ in values, magnitudes and 

ranges. Therefore, a normalization technique (13) was found useful from the point of view of 
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k Afc k Afc k Afc k Afc 

1 16.1272 11 0.35186 21 0.02574 31 8.616e-07 

2 4.23340 12 0.26605 22 0.02178 32 1.659e-10 

3 2.71224 13 0.19993 23 0.01498 

4 1.72234 14 0.17673 24 0.01115 

5 1.50039 15 0.15153 25 0.00807 

6 1.25370 16 0.13849 26 0.00686 

7 1.00954 17 0.11797 27 0.00291 

8 0.83187 18 0.07011 28 0.00155 

9 0.54545 19 0.05616 29 0.00010 

10 0.39244 20 0.04934 30 4.933e-06 

Table 4: Eigenvalues of the SCRG distribution. 

statistical analysis. Besides the need for normalization, mean values and standard deviations 

of the characteristics will be necessary in further testing procedures as well as directions in 

the multivariate space where the data is most strongly correlated. These parameters should 

be considered when creating testing data for the models. Also, they are necessary for the 

acceptance or rejection of solutions obtained from the design centering problem. 

Eigenvalues of a model input data autocorrelation matrix represent variances along 

principal directions of the data in the input space. They can be found by numerically 

solving equation (15). The SCRG data distribution was characterized by 32 eigenvalues 

listed in Table 4. Resulting eigenvalues of the S, CR, and G data distributions are listed 

in columns Table 5. As expected, the inputs are strongly correlated along a few principal 

directions since the calculated eigenvalues significantly differ in magnitude and only a few 

have a distinct non-zero value. 
The process of neural model development was improved after rotating the coordinate 

system of the input data accordingly. As a result of this rotation, the new system axes 

became aligned with the principal directions. The rotation, as in (17) was performed by 

the linear PCA operator (16) consisting of eigenvectors representing the principal directions 

arranged in descending order, corresponding to their significance from the most to the least 

important. 
The input data representation error A%, referred to as "PCA error" and expressed 

by (22), was evaluated for each of the models developed. Reducing the input space to m 

dimensions created an error which is shown for each distribution in Figures 22 and 23. 

The bar heights in these figures is scaled with respect to the largest eigenvalue. Thus, 

the error can be considered as a percentage of the maximum variance that the input data 
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Jfe Afc(S) Xk (CR) Afc(G) 

1 6.12445 4.32555 4.20851 

2 1.29124 2.41000 1.59055 

3 1.01986 0.56728 1.18649 

4 0.77943 0.33684 0.81762 

5 0.47338 0.21927 0.09877 

6 0.23510 0.08336 0.07890 

7 0.04448 0.03845 0.01028 

8 0.03203 0.01920 0.00886 

9 ' 8.542e-06 

10 2.607e-09 

Table 5: Eigenvalues of S, CR, and G distributions. 

had along the distribution principal direction. Limiting the number of models inputs to 

m = 5 resulted in an approximate 10% ratio for all the distributions except for the SCRG 

distribution which was found to be less than 50%. 
The improvement of the training is shown in the test data scattering plots, in Figures 24 

to 27, where scatterings denoted by (a) represent the testing data for models developed on 

original data without the PCA transformation, whereas scatterings denoted by (b) represent 

performance of the model with PCA pre-processed models inputs. Again notice that the 

PCA transformation of the model inputs enabled the test points to be aligned better with 

the scattering plot diagonal axis. 
In addition to efficient measurement data representation, the PCA transformation en- 

ables reduction of the number of model input variables. In other words, the input space 

dimension for the models can be reduced by disregarding the least important directions 

of the data distribution. Although this creates an error in the data distribution represen- 

tation, this is still feasible because of the significant differences in the eigenvalues. Also, 

the input space reduction plays a crucial role for the optimization algorithm employed in 

the DESCENT software package for design centering purposes. It is desirable to keep the 

number of the model inputs small; however, the input data representation error should not 

drastically affect model quality. This leads to a tradeoff between accuracy and computing 

time when deciding on the number of variables employed as the model inputs. 

Successively, process models with 5 inputs were trained and their test scattering plots 

are shown in Fig. 24c to 27c. As indicated in these figures, the testing errors for the 

reduced models were larger as compared to the originals and non-reduced ones, however, 

they were comparable to the errors obtained for the models without either PCA or input 
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Figure 22: PCA error A% for: (a) SCRG distribution (b) S distribution. 

1 i r 

Figure 23: PCA error A% for: (a) CR distribution (b) G distribution. 
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space reduction. This was considered acceptable for the further design centering efforts. 

6.2    Design Centering 

The process model, as shown in Fig. 19, consists of two main components: PCA and 

the neural network. The inputs of the PCA portion are the input characteristics of a 

model process whereas the outputs of the neural network represent the process output 

characteristics. The intermediate variable u represents the model input and is so normalized 

that its mean value is a zero vector. Also, the data distribution represented in this abstract 

space is reduced to m = 5 variables (e.g. entries of vector u) and the mutual correlation 

between these variables is zero. Standard deviations and thus the variances of each of 

the variables is one. This enables easy visualization of the set of data as points in the 

reduced abstract space, projected onto a two-dimensional coordinate system with u\ and 

u2 on the system axes. Figures 36 through 39 represent points visualized in this manner 

as dots. Location of points in this projection is evaluated for only two coordinates, and 

u3 = u4 = us = 0 is assumed only for the purpose of visualization. 

The PCA portion of the model is linear so the process nonlinearity is hidden in the neural 

network mapping. The model output value can be easily obtained using that mapping. To 

evaluate the model input value given an output target requires calculating u through the 

neural network mapping inversion. The first attempt at design centering was to find an input 

characteristic value by means of the model inversion. However, the model nonlinearity 

made this attempt non-optimal, especially when larger output characteristics tolerances 

were allowed. 
This fact can be intuitively understood after representing the target location and the 

tolerance region in the abstract space. Consider the SCRG-F process model. Fig. 28 shows 

the target and tolerance regions for three tolerances: 5%, 10%, and 20%. Target values 

selected for this process are listed in Table 6. The assumed tolerances concern the selected 

three output characteristics Idss, Gm, and Vpo. The remaining characteristics assumed as 

non-critical are not restricted to any tolerance region, so their tolerances are assumed to 

be infinitively large. On the figures, the abstract representation of the tolerance region is 

shown as the unshaded area. The inverse to the target location is shown as the diamond. 

Although only two out of four abstract coordinates are included in the figures, it may be 

concluded that due to the nonlinearity of the model, the target is located off the optimal 

position within the tolerance region. Thus deviations in the input characteristics values 

will cause larger yield loss than if they were distributed around the center of the tolerance 

region. 
The design centering algorithm that enables yield maximization has been introduced 

in section 5.4 of this report.   The algorithm is implemented by the program DES-CENT 
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a) 

b) 

c) 

Figure 24: The SCRG-F model. Scattering plots for testing data. Model with (a) no PCA, 

(b) PCA, (c) reduced to 5 variables. 
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Figure 25: The S-F model. Scattering plots for testing data. Model with (a) no PCA, (b) 

PCA, (c) reduced to 5 variables. 
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Figure 26: The CR-F model. Scattering plots for testing data.  Model with (a) no PCA, 

(b) PCA, (c) reduced to 5 variables. 
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Figure 27: The G-F model. Scattering plots for testing data. Model with (a) no PCA, (b) 

PCA, (c) reduced to 5 variables. 
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Characteristics Target value 

F-Idss 224.0 

F-Rds 2.6482 

F-Rgs 3.458 

F-Rs 0.844032 

F-Rdg 3.720 

F-Rd 1.10165 

F-Vbdg 8.7719 

F-Vbgs 7.769 

F-Vpo -1.495 

F-Gm 201.1 

G-Ids-pk 243.64 

Lg 0.199696 

C 5.93036 

i-Rsh 0.004311 

i-W 11.5838 

p-Rsh 1.87114 

p-W 11.3693 

BH 1.33161 

BG 36.5538 

Table 6: Target F values for SCRG-F process. 

(included in the entire package DESCENT). The optimal solutions for the input settings 

were found using the process models SCRG-F, S-F, CR-F, and G-F, assuming the target 

final characteristics values as listed in Tables 6 and 7. The results obtained are shown 

in Fig. 28 through 31 for each stage. Centered values for each of the stages for assumed 

tolerances are indicated by the cross. As the design center algorithm progresses, the initial 

point, UQ, denoted as diamond, obtained by the inversion of the target point y0, is moved 

to the optimal location, which maximizes the yield of a respective fabrication process. 

Upon completion of the algorithm, the center values of input characteristics are found 

with the PCA inverse operator (19) and the improved yield is estimated. The centered 

input characteristics values computed for the analyzed considered stages are summarized in 

Tables 8 and 9. In the Tables XQ is the process stage input inverse to the target y0. In other 

words, if setting xo is chosen as the input of the process model, the model will respond with 

output y0. However, the actual process involves random fluctuations that affect the input 

settings and cause the yield loss. Then, assuming a specified tolerance level, another input 
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Characteristics Target value 

F-Idss 224.0 

F-Rds 2.674 

F-Rgs 3.514 

F-Rs 0.8926 

F-Rdg 3.678 

F-Rd 1.053 

F-Vpo -1.495 

F-Gm 201.1 

Table 7: Target F values for S-F, CR-F, and G-F process. 

center point xc should be selected for the sake of the yield maximization. 

As shown in Tables 8 and 9, final location of the center point xc depends on the tolerance 

level selected. Roughly, large tolerances result in a large shift to the input center point xc. 

To illustrate this variability the percentage change of the inverse solution ceo, evaluated 

as (xc - XQ)/XQ, has been graphed for various tolerances in Figs. 32 through 35. Note 

that some of the input characteristics affect the yield significantly stronger than others. 

Obviously, the height of bars shown in the figures corresponds to the sensitivity of the 

process yield to particular input characteristics. This provides indications which process 

parameters are the most important for yield enhancement. For the processes investigated, 

the input characteristics can be referenced in Tables 1 and 2. 

6.3    Yield Enhancement Test 

The statistical yield estimation is implemented in the DESCENT package by a program 

named DES-TRY. This program performs verification of the centering data. The following 

procedure performs the fabrication process yield estimation: First, the input characteristics 

distribution is identified in order to enable generation of random points that conform to 

the distribution statistical parameters. The training data autocorrelation matrix is always 

prepared for PCA. The matrix can then be successfully used for identification of statistical 

parameters of the input characteristic distributions. 

Secondly, a large number of random points from Gaussian distribution must be gen- 

erated and then used for yield testing. The Gaussian distribution should have statistical 

parameters, such as variances and mutual correlations of characteristics, equal to the ones 

present in the original training data. In this approach the use of 10000 points was found to 

be sufficient for the yield estimation. 

Successively, each of the generated points, treated as the model input, can be evaluated 
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Characteristics x0 xc(5%) JCC(10%) sc(20%) 

1 OBSA 12.7371 12.1568 11.045 5.72798 

2 EL2 1.2015e+16 1.20066e+16 1.20368e+16 1.17728e+16 

3 OBSB 13.3056 12.5071 11.9152 0.804608 

4 Rho 1.72557e+08 1.75338e+08 1.77475e+08 2.15856e+08 

5 MuH 5659.08 5607.48 5565.15 4863.74 

6 ns 6.45442e+06 6.41278e+06 6.38268e+06 5.80021e+06 

7 Nd 1.77691e+18 1.74718e+18 1.75706e+18 1.21431e+18 

8 ETA 657.323 646.326 649.98 449.201 

9 MuO 1524.63 1523.54 1522.15 1509.38 

10 Mul 26400.9 25473.3 25385.1 10053.6 

11 C-Idss 925.17 919.348 915.339 833.106 

12 C-Rds 1.75049 1.7637 1.78973 1.90798 

13 C-Rc 15.8768 16.366 18.6594 17.6571 

14 . C-Rsh 16581.4 16663.2 16525.7 18464.1 

15 O-Rsh 0.338449 0.34164 0.345169 0.384863 

16 O-W 10.261 10.2572 10.2074 10.3451 

17 R-Ids 642.938 635.591 631.212 524.66 

18 R-Rds 2.32213 2.33644 2.37673 2.45576 

19 G-Idss 220.691 213.373 211.83 94.3121 

20 G-Rds 2.81938 2.87351 2.91545 3.66116 

21 G-Rgs 3.72193 3.74162 3.79578 3.90967 

22 G-Rs 1.09409 1.09919 1.10659 1.16292 

23 G-Rdg 3.39089 3.41537 3.48194 3.62667 

24 G-Rd 0.778185 0.789542 0.810896 0.916601 

25 G-Vbdg 8.54138 9.27326 10.0964 19.1446 

26 G-Vbgs 7.92374 7.81729 7.48703 7.02254 

27 G-Vpo -1.2877 -1.29316 -1.21426 -1.62586 

28 G-Gm 204.103 202.879 201.863 185.259 

29 G-Ids-pk 220.532 213.213 211.668 94.134 

30 G-AL 1.57001 1.57125 1.58131 1.56171 

31 G-Rsh 0.0579221 0.0583812 0.0589691 0.0643541 

32 G-W 10.0864 10.0887 10.0782 10.1607 

Table 8:  Inverse and centered solutions for a given target and tolerances of 5, 10, 20%; 

SCRG stage. 
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Characteristics XQ ajc(5%) SBC(10%) zc(20%) 

OBSA 10.2265 9.94636 4.44489 2.44095 

EL2 1.26928e+16 1.24778e+16 1.48646e+16 1.30234e+16 

OBSB 12.4846 11.1765 6.05006 -1.92648 

Rho 1.7403e+0ö 1.79282e+08 1.8797e+08 2.23325e+08 

MuH 5632.27 5535.22 5388.58 4731.32 

ns 6.42992e+06 6.35175e+06 6.20051e+06 5.67978e+06 

Nd 1.89656e+18 1.80194e+18 1.90554e+18 1.30441e+18 

ETA 701.584 666.583 704.906 482.526 

MuO 1525.11 1522.61 1500.96 1494.24 

Mul 29056.5 26508.3 28172.7 12024.8 

C-Idss 922.96 921.31 926.01 827.71 

C-Rds 1.7652 1.7230 1.7823 1.9263 

R-Idss 17.183 18.627 21.120 19.933 

R-Rds 16501 17928 17061 18252 

Re 0.3404 0.3296 0.3607 0.3843 

O-Rsh 10.232 10.358 10.234 10.318 

O-W 640.54 647.01 625.01 520.77 

R-Rds 2.3450 2.4383 2.1505 2.4991 

G-Idss 240.53 226.34 220.925 166.523 

G-Rds 2.7628 2.8279 2.88418 3.22121 

G-Rgs 3.74395 3.76187 3.79176 3.89617 

G-Rs 1.07237 1.07749 1.07304 1.14254 

G-Rdg 3.45406 3.48515 3.54396 3.58107 

G-Rd 0.809363 0.818058 0.845512 0.856502 

G-Vpo -1.11725 -1.12633 -1.07821 -1.35426 

G-Gm 206.417 205.105 204.414 194.203 

Table 9: Inverse and centered solutions for a given target and tolerances of 5, 10, 20%; S, 

CR. and G stages. 
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Figure 28: Design centering in SCRG-F fabrication stage. The diamond represents an 

inverse u0 to target y0 in the abstract coordinates u-i-v.2- Centered value uc, indicated by 

the cross, enables the yield maximization, within tolerances S equal (a) 5%, (b) 10%, and 

(c) 20%. 
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b) 

!    ■   ™\ ; 
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Figure 29: Design centering in S-F fabrication stage. The diamond represents an inverse u0 

to target y0 in the abstract coordinates Ui~u2. Centered value uc, indicated by the cross, 

enables the yield maximization, within tolerances 8 equal (a) 5%, (b) 10%, and (c) 20%. 
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Figure 30: Design centering in CR-F fabrication stage. The diamond represents an inverse 

u0 to target y0 in the abstract coordinates u-^-u-i- Centered value uc, indicated by the 

cross, enables the yield maximization, within tolerances 8 equal (a) 5%, (b) 10%, and (c) 

20%. 
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b) 

Figure 31: Design centering in G-F fabrication stage. The diamond represents an inverse 

u0 to target y0 in the abstract coordinates u\-u-i. Centered value uc, indicated by the 

cross, enables for the yield maximization, within tolerances 5 equal (a) 5%, (b) 10%, and 

fc) 20%. 
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Figure 32: Percentage change to the inverse solution after centering for (a) 5%, (b) 10%, 

and (c) 20% tolerance; SCRG stage. 
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Figure 33: Percentage change to the inverse solution after centering for (a) 5%, (b) 10%, 

and (c) 20% tolerance; S stage. 
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Figure 34: Percentage change to the inverse solution after centering for (a) 5%, (b) 10% 

and (c) 20% tolerance; CR stage. 
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Figure 35: Percentage change to the inverse solution after centering for (a) 5%, (b) 10%, 

and (c) 20% tolerance; G stage. 
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Stage S No centering Centered 

SCRG-F 5% 10.01% 10.78% 

10% 36.39% 38.71% 

20% 74.13% 99.99% 

S-F 5% 13.38% 14.29% 

10% 38.18% 41.15% 

20% 73.54% 99.28% 

CR-F 5% 12.04% 12.20% 

10% 29.48% 37.35% 

20% 55.68% 75.01% 

G-f 5% 11.38% 12.78% 

10% 37.63% 39.94% 

20% 74.79% 98.62% 

Table 10: Fabrication yield for inverse solution and centered solution with allowed toler- 

ances 5. 

for the corresponding output characteristics values, through the model. Simultaneously, its 

location in the abstract space can be visualized, as shown in Figures 36 through 39. There 

are 10000 small dots representing the points on each of the figures. 

Once the output characteristics values are known, the points can be checked to see if 

they fall within the tolerance region. The percentage of points that pass the test is the 

computed process yield estimate. In Figures 36 to 39 the points which pass the tolerance 

test are represented by the bold points. 

Each of the investigated fabrication processes was tested with the program DES-TRY 

for yield enhancement after the design centering was completed by the DESCENT package. 

The results are shown in Table 10. The yield was estimated for two cases: with no centering 

involved, and after centering. In the first column the input characteristic distributions 

have a mean value equal to XQ as obtained from the assumed target output by the model 

inversion. In the second case, the centered input xc has been found using the design 

centering algorithm, and used as the input distribution mean, resulting with an improved 

yield. Each process stage was evaluated in this manner for three values of tolerances 5. As 

seen in the Table, the yield improvement becomes significant for large tolerances, which is 

reasonable due to the smoothness and nonlinearity of the process models. 
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Figure 36: Yield test for the SCRG-F reduced model: before centering (a) 5% tolerance, (b) 

10% tolerance, (c) 20% tolerance; and after centering (d) 5% tolerance, (e) 10% tolerance, 

(f) 20% tolerance. 
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Figure 37: Yield test for the S-F reduced model: before centering (a) 5% tolerance, (b) 10% 

tolerance, (c) 20% tolerance; and after centering (d) 5% tolerance, (e) 10% tolerance, (f) 

"20% tolerance. 
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Figure 38: Yield test for the CR-F reduced model: before centering (a) 5% tolerance, (b) 

10% tolerance, (c) 20% tolerance; and after centering (a) 5% tolerance, (b) 10% tolerance, 

(c) 20% tolerance. 
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Figure 39: Yield test for the G-F reduced model: before centering (a) 5% tolerance, (b) 

10% tolerance, (c) 20% tolerance: and after centering (d) 5% tolerance, (e) 10% tolerance, 

(f) 20% tolerance. 
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7    Conclusions 

The presented design centering approach and related software package enabled yield maxi- 

mization in fabrication processes described by numerical data taken from process measure- 

ments. The yield can be significantly improved, particularly when nonlinear relationships 

and larger tolerances are involved in the process characterization. This is the case for the 

manufacture of GaAs microelectronic devices. The design centering algorithm can work 

efficiently even with large measurements data sets since a Principal Component Analysis 

is performed on the raw data to reduce the problem size and thus avoid the "curse of 

dimensionality". 
In addition, the package for design centering DESCENT offers a trade-off between the 

inverse modeling/design centering error and the computational complexity of the solution. 

Less accurate design centering solutions can be produced quickly through modeling with 

few principal components, while more precise solutions would require inclusion of more 

variables. In the latter case, optimization needs to be performed in multidimensional space 

and at a higher computational expense. 
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8    Appendix 

8.1    Wtab Program Description 

Wtab is a program that tabulates the data from each reticle on a wafer. Several input 

options enable Wtab to organize the data in different forms. The first option lets the user 

specify the characteristics to be examined. Otherwise, Wtab will report every possible wafer 

characteristic, even if no measurements of that characteristic were made on that wafer. In 

addition to saving execution time, this feature will greatly reduce the size of the generated 

wafer table. 
A second feature of Wtab is the reticle referencing option. By specifying a list of reticles, 

only those reticles will be listed in the wafer table. If a given reticle does not contain 

any characteristic data, or if the reticle does not contain data for all of the characteristics, 

Wtab will search for the reticle's nearest neighbor to find characteristic data values. Wtab's 

third main feature is very similar to the reticle referencing option, but it allows sub-reticle 

locations (test structure pad numbers) to be specified. This option must be used if the 

reticle referencing option is to be invoked. 

Usage 

Only one input value is required by Wtab, the wafer identification string (see the Program 

Operations section for more details on the wafer identification string). This string is the 

basis for all of the names of the data files that Wtab will tabularize. Wtab creates up 

to three output files (depending upon the options selected), with each output file name 

beginning with the wafer identification string. If the (-o) option is selected, the output file 

names will not use the wafer identification string as a base; instead, Wtab will invoke the 

reticle referencing option.Likewise, if (-w) is followed by a file name, the reticle locations 

contained in the file immediately following the (-w) will be used in the reticle referencing 

option. 

Program Operation 

When Wtab is invoked, the first item examined is the wafer identification string. This string 

is composed of eight alphanumeric symbols representing the company name (or source of 

the data), the process lot, the boule source, the boule number, and the wafer number. The 

characteristic data files should be located in a directory that is loosely based on the wafer 

identification string. These data files have names composed of the six symbol characteristic 

concatenated to the wafer identification string with a file extension of 'dat'. Each char- 

acteristic data file contains a variable number of measurements, with every measurement 

composed of two parts. The reticle/sub-reticle location, which consists of a reticle XXYY 
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location in addition to the sub-reticle xxyy location, is the first part. Next is the actual 

value measured for the characteristic of the location. 

As the next step in the program operation, the command line options are parsed, and 

flags are set depending on the presence or absence of the options. If the characteristic option 

is given (-c), then Wtab opens the specified file and reads in the characteristics contained 

in the file into an array of strings. No attempt is made to check if these characteristics are 

valid; that is, if the characteristics are ones that are contained in the file 'characteristics.]!'. 

Next, Wtab searches through all the characteristic data files for data values. If a reticle 

location exists, the data for a specific characteristic is added to a linked list for that specific 

reticle location. Otherwise, a new reticle location is appended to a linked list of reticle 

locations for the wafer. Once all of the characteristics data files have been processed, a 

wafer table is written using a basename (either the wafer identification string or the string 

specified by the -o command line option) and the extension 'waf. This file is then sorted 

by the reticle location. 

If the sub-reticle reference option is used, Wtab reads the referenced sub-reticles from 

the file name supplied on the command line into an array. Wtab then locates the nearest 

reticle/sub-reticle with a characteristic data value for each referenced sub-reticle using Eu- 

clidean distances (note that the distance could be zero, thus the reference reticle already 

has a characteristic data value). After all of the referenced sub-reticles are processed and all 

of the characteristic data is assigned to them, an output file is written using the basename 

followed by the extension 'reticle'. 
Finally, if the reticle option is utilized, the reticle locations contained in the file specified 

on the command line are read into an array. To conserve memory and increase execution 

speed, Wtab deallocates the memory used in the creation of the wafer table then allocates 

memory to hold the referenced sub-reticle table. For this reason, the sub-reticle reference 

option must be used if the reticle option is used. Again, using Euclidean distances, the 

nearest neighbor to the reference reticles are located and the characteristic data is copied 

from the nearest neighbor into the reference sub reticle. When all of the characteristics and 

referenced reticles have been processed, a file is written to disk using the basename and 

'wafer' as an extension. 
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8.2    Inverse Mapping through Exhaustive Search Program 

Program "inv" implements an algorithm introduced in [32]. 

Program command line: 

inv (weights-file) (solution-file) (desired-output-file) 

Program configuration file "inv.ini": 

The following are the program configuration parameters. They are assigned values present 

in the configuration file. Each of the parameters, except for the first in the table, will be 

assigned a default value, if no value is provided in the file. 

input_compact_set Input vector entries range. (Radius of the input domain hypercube) 

samples Total number of samples generated from the PDF at each relocation 

max iterations Total number of program iterations 

error_threshold Maximum RMS error for a minimum to be considered global 

explosion_threshold Maximum trajectory speed for a minimum to be considered local 

tracing Set to 1 to create file "tracing.txt" with Maple 3D trajectory trace 

minima_details Set to 1 to create file "detail.txt" with detected minima 

initiaLip Initial input vector(s) 
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8.3    Process Stages Models 

Weights of the developed models are listed in this paragraph. The first line contains number 

of inputs, number of hidden neurons, and number of outputs of the neural network. Note 

that the number of inputs, and the number of hiddens do not include a bias unit. Afterwards, 

two matrices are listed. Thus the number of columns in the corresponding matrices is 

increased by one because a bias neuron is added to the hidden and input layer. In the 

listings the matrices' columns are presented in succession if they exceed a page width. In 

this case, dashed lines indicate the fact that a matrix was wrapped up. Also PCA matrices 

are listed, if used. 

The SCRG-F model weights. (See description in Chapter 3, and Fig. 7.) 

32 22 19 
1.6869e+00 5.4208e-01 2.8061e-01 4.9037e-01 -1.0935e+00 1.2227e-01 4.0896e-01 4.1035e-01 
2.1359e-01 -2.3581e-01 1.5130e-01 8.5681e-01 -9.8346e-01 -3.9503e-01 3.7790e-01 3.7792e-01 
-2.7058e-01 -3.4106e-01 -1.8894e-03 7.4523e-02 -4.2765e-01 7.1626e-02 1.8509e-01 1.8495e-01 
3.6622e-01 -5.5526e-04 5.0624e-03 -3.6851e-01 6.4059e-03 7.8836e-01 -2.3402e-01 -2.3330e-01 
-8.2443e-01 4.5483e-02 -1.8358e-01 6.2453e-01 -6.6952e-01 -2.4643e-01 -1.0638e+00 -1.0650e+00 
-1.3340e-01 -5.2017e-02 5.9423e-02 8.7749e-01 -1.1085e+00 7.1370e-02 5.5972e-01 5.5936e-01 
-1.7409e-01 -3.9046e-01 4.1157e-02 1.7419e-01 -2.0229e-02 -5.1311e-01 3.0282e-01 3.0173e-01 
3.2058e-01 -2.6701e-02 2.7672e-01 1.2301e+00 2.0604e-01 -2.1857e+00 2.3384e-01 2.3351e-01 
3.9931e-01 8.2334e-01 -2.7575e-01 -7.1957e-01 6.3962e-01 5.3313e-01 3.1222e-01 3.1393e-01 
5.4664e-01 -3.0897e-01 2.7648e-01 1.4511e-02 -3.1813e-01 3.3442e-01 2.4820e-01 2.4744e-01 
-4.1055e-01 8.7991e-01 -4.0441e-02 2.7410e-01 -1.6665e-01 -5.3288e-01 6.4686e-01 6.4753e-01 
2.1118e-01 -8.5973e-03 -2.5865e-02 4.3084e-01 -5.4944e-01 -2.0469e-01 -2.7909e-01 -2.7838e-01 
-1.3939e-01 1.2047e+00 3.8534e-01 -1.5250e-01 5.2691e-01 -3.1473e-02 4.0456e-01 4.0412e-01 
-6.2166e-02 -2.1027e-01 1.1560e+00 -4.4107e-01 5.5290e-01 4.4806e-01 7.7686e-01 7.7737e-01 
4.1411e-01 7.6331e-01 -4.8539e-01 -1.2025e-02 -3.8200e-01 5.9501e-01 -3.6446e-01 -3.6674e-01 
8.4919e-02 -1.1094e-01 3.5742e-01 5.0102e-01 -1.1864e+00 1.0306e+00 -2.2357e+00 -2.2383e+00 
7.1496e-01 -6.6459e-02 8.4225e-01 4.9803e-01 1.0294e-01 -7.9632e-01 -5.1525e-01 -5.1591e-01 
-5.3660e-02 -1.7975e-01 -2.3745e-01 6.0509e-02 1.8797e-01 -7.5908e-01 2.1954e-01 2.1966e-01 
-1.0683e-01 -1.9457e-01 4.9324e-01 -7.9145e-01 2.9812e-01 1.3550e+00 -7.4440e-02 -7.3708e-02 
-2.4825e-01 3.3248e-01 9.2573e-02 1.8243e-01 2.0856e-01 -6.4470e-01 -2.7121e-01 -2.7164e-01 
6.0487e-01 6.3782e-01 -1.9762e-01 3.3982e-01 -3.7436e-01 1.2810e-01 -7.3869e-01 -7.3784e-01 
9.7252e-02 7.5301e-01 -6.6526e-01 2.5883e-01 6.0879e-01 -1.3961e+00 -2.5089e-01 -2.5064e-01 

8.0060e-01    -4.9365e-02 -4.1070e-01 1.3226e+00 1.7005e-01 -7.1899e-01 1.4763e+00 1.1367e+00 
-6.8149e-01 9.8955e-01 1.1193e-01 -6.8468e-01 2.1954e+00 -3.4843e-01 6.4253e-02 -1.3254e-02 
6.9354e-01    -6.4109e-01 3.5795e-03 4.2916e-01 -7.7051e-01 -1.4373e+00 2.1248e-01 5.1655e-01 
1.0902e+00    -7.2162e-02 6.2506e-02 -7.0412e-02 1.7267e-01 -6.1101e-01 -2.7058e-01 2.7399e-02 
-7.3818e-01 6.0613e-01 4.8744e-01 -8.0093e-01 -8.8806e-01 1.3300e+00 -7.0584e-01 2.4769e+00 
-1.6278e-01 1.5392e+00 -6.2428e-01 3.2247e-01 -1.3580e-01 -7.3359e-01 -2.1565e-01 -1.0557e+00 
-3.2056e-01 -3.2967e-01 2.0236e-01 2.3536e-01 -1.7186e-02 1.2706e-01 6.4150e-01 -8.7301e-02 
-5.3570e-03 -4.0125e-02 8.4369e-01 -5.6384e-01 -1.7019e+00 -7.6722e-01 -2.7979e-01 7.4878e-01 
-8.9703e-01 3.6301e-01 7.3949e-02 -1.7804e-01 -9.2356e-01 -4.7546e-01 2.0267e+00 1.9646e-01 
2.6111e-02    7.3827e-02 -1.6580e-01 2.1171e-01 4.7668e-01 4.4553e-01 9.0726e-01 -6.5148e-01 
-1.9628e-02 -9.4641e-03 -1.1439e-01 6.7869e-01 5.3354e-01 -6.6755e-01 8.9658e-01 -4.6307e-01 
-1.4861e+00 3.4981e-02 3.0038e-02 4.1641e-01 -1.3566e-01 1.0670e+00 2.9757e-01 -4.1017e-02 
-8.2192e-02 5.4507e-01 -2.7420e-01 -5.2260e-01 1.3902e-01 -3.3008e-01 -9.1525e-01 -1.0612e+00 
6.2735e-01    7.3931e-01 -3.3984e-01 -2.4899e-01 2.0476e-01 2.2887e-01 -8.4203e-01 -9.3192e-01 
-8.1281e-01 6.9390e-01 -4.9834e-01 -6.8091e-01 3.3630e-01 8.7303e-01 -5.6708e-01 1.8204e+00 
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9.1543e-02    -1.5392e+00 -1.2499e+00 -2.9387e-01 1.8217e+00 4.2206e-01 5.8859e-01 2.5194e-01 
-4.1785e-01 2.3760e-01 -1.8858e-01 -5.4097e-01 5.2739e-01 6.8573e-01 -1.0633e+00 -7.2299e-02 
2.1298e-03    -5.9073e-01 9.2185e-01 7.6601e-01 1.4046e-01 5.7979e-01 9.1696e-01 1.4432e-01 
-1.5428e+00 6.4546e-01 8.1707e-01 3.3920e-01 -2.5986e-01 -3.7365e-01 -9.3843e-01 -2.1942e+00 
-2.8255e-01 -4.7093e-01 1.2867e+00 6.5018e-01 1.2542e-01 -7.5167e-01 -1.2078e-01 4.5300e-01 
-7.1501e-01 -8.3269e-01 -3.9645e-02 6.0260e-01 9.1448e-01 7.4217e-01 -1.5481e+00 -1.0749e+00 
7.4118e-01    -2.7693e-01 -1.3656e-01 -1.0155e+00 8.8738e-01 -1.0048e+00 -8.3020e-01 6.5586e-01 

-9.7412e-02 -3.0135e-01 
-4.6448e-01 8.9346e-01 
-3.3293e-01 2.7124e-01 
-4.5970e-02 2.0100e-01 
7.8493e-01 -1.2462e-01 
-3.3772e-01 -5.2802e-02 
-5.7916e-02 -1.9160e-01 
-4.3976e-01 -7.3895e-01 
-1.9622e-01 6.6527e-03 
1.0874e-03 -2.4716e-01 
-2.3554e-01 4.7320e-01 
5.9049e-01 -1.6299e-01 
-3.1744e-01 2.2132e-01 
-6.6465e-01 6.6031e-01 
1.0413e-01 -1.0587e+00 
-3.9245e-01 3.1014e-01 
5.1952e-01 2.8218e-01 
3.1183e-01 -1.7244e-01 
1.5220e+00 -3.1759e-01 
2.3832e-01 8.1243e-01 
-3.4163e-01 -7.6899e-01 
4.5147e-02 -1.0409e+00 

-2.6439e-01 9.8869e-01 5.8387e-04 6.6127e-05 1.0883e-03 -1.8188e-04 
-1.0236e+00 -1.1360e+00 5.7539e-04 -1.0904e-03 2.2729e-04 -9.0469e-04 
5.7587e-01 1.1787e+00 -4.1546e-04 -1.1866e-03 -3.6368e-04 4.5809e-04 
4.9449e-01 -3.3064e-01 2.6893e-04 -1.8767e-04 8.6606e-04 4.0103e-04 
-4.5149e-01 -2.1224e-01 -7.3432e-04 7.8540e-04 -6.0949e-04 4.7620e-04 
7.2678e-01 -3.0288e-01 3.8483e-04 -7.8119e-04 2.4875e-04 5.4426e-04 
-1.6000e-01 4.4897e-01 6.0083e-04 8.3721e-04 5.8353e-04 1.4772e-04 
6.6307e-01 -4.8898e-01 4.6568e-04 4.0894e-04 4.6105e-04 3.4990e-04 
-2.0837e+00 -9.2901e-01 5.9115e-04 1.0425e-03 -3.5435e-04 -5.9074e-04 
-3.7877e-01 1.9657e-01 9.3291e-04 2.4171e-04 4.0571e-04 1.1009e-03 
-2.8878e-01 1.0262e+00 1.0483e-03 1.8452e-04 -2.5464e-04 3.7683e-04 
-5.5015e-01 1.5388e-01 3.4493e-04 -1.2021e-03 1.0136e-03 5.6216e-04 
4.0406e-01 -5.2031e-02 9.7849e-04 2.4617e-04 6.4974e-06 3.0857e-04 
1.3307e+00 -3.0192e-01 1.0736e-03 6.4095e-04 -3.6521e-04 6.1561e-04 
1.7918e-01 -1.4624e-01 -9.7566e-04 4.2011e-04 -5.5135e-04 -1.4570e-05 
-6.3268e-01 6.5383e-01 3.9811e-04 5.4121e-05 7.6746e-04 5.9926e-04 
-1.2104e+00 -2.6608e-01 -1.0053e-03 7.5434e-04 -1.2128e-03 1.1319e-03 
3.9656e-01 -6.7726e-01 3.4487e-04 -2.6877e-04 -2.0243e-04 6.3200e-04 
1.0440e+00 -5.4526e-01 3.5634e-04 1.2512e-04 1.8235e-04 -1.0077e-04 
1.5107e+00 -8.6209e-01 2.6390e-05 6.6839e-04 -5.9947e-04 1.2249e-04 
2.6865e+00 4.5899e-01 7.1968e-04 5.5802e-05 8.4026e-05 -7.2555e-04 
-1.5395e+00 9.5720e-02 -1.4034e-04 -5.5305e-04 -3.7554e-04 -5.7408e-04 

6.6973e-04 -6.8143e-04 -8.5457e-04 
-1.1760e-03 -7.8220e-04 1.1762e-03 
1.4839e-04 3.1323e-04 -4.9370e-04 
7.6359e-04 5.8056e-05 -1.1994e-03 
3.1529e-04 -4.9330e-04 3.5719e-04 
9.4277e-04 6.9816e-04 -1.5538e-04 
-3.1547e-04 -7.8787e-05 -5.5721e-04 
-1.0432e-03 4.9355e-04 -1.0228e-03 
-1.0440e-03 2.8300e-04 -3.1212e-04 
-1.1564e-03 9.4190e-04 2.7557e-04 
1.1788e-03 -4.9613e-04 -1.6057e-04 
4.1551e-04 1.1715e-03 -8.8088e-04 
-1.2947e-04 1.4271e-04 -5.8079e-04 
4.3123e-04 -8.6764e-04 1.2254e-04 
-7.5497e-05 2.8537e-04 -5.4700e-04 
-6.5941e-04 -1.1398e-03 -7.9845e-04 
6.0932e-04 -2.4128e-05 4.9868e-04 
-7.9232e-04 4.9293e-04 -5.2076e-04 
-6.6131e-04 -6.1973e-04 -4.0855e-04 
-1.2378e-03 2.1157e-04 7.0973e-04 
-3.0823e-04 -8.6768e-04 1.1667e-03 
-2.1042e-04 -1.0520e-03 3.3013e-04 

2.9360e-04 1.7410e-04 -8.5561e-05 1.0826e-03 1.2415e-03 
1.0437e-03 9.3678e-05 9.9664e-04 8.3964e-04 3.6049e-04 
-6.4279e-04 8.0496e-04 6.0838e-04 9.6861e-05 -8.8997e-05 
2.1550e-04 5.6998e-04 -3.4840e-04 8.2494e-04 5.6167e-04 
1.0515e-03 -3.3386e-04 -3.0265e-04 7.4429e-04 9.3954e-04 
9.5709e-04 9.0448e-06 -7.1742e-04 4.51i5e-04 -4.7820e-04 
1.1910e-04 7.1475e-04 1.4707e-04 3.0624e-04 -1.2442e-03 
5.4319e-04 4.1286e-04 4.2312e-05 -4.8741e-04 -7.4261e-04 
-3.7126e-04 -1.2614e-04 -6.7165e-04 1.0102e-03 -9.8510e-04 
-1.0181e-03 -6.7509e-04 -4.5096e-04 -6.8897e-05 9.0693e-04 
-1.1287e-03 -1.0824e-03 8.3972e-04 2.0161e-04 -4.4488e-04 
1.0557e-03 2.7259e-04 -5.3373e-04 -7.5136e-05 -6.7889e-04 
8.1645e-04 -2.8224e-04 -4.8467e-04 4.3951e-05 3.2075e-04 
4.3386e-04 -1.0552e-03 -5.8984e-04 5.1118e-04 -4.9870e-04 
-1.1564e-03 1.1992e-03 -7.5312e-06 1.2412e-03 -7.3818e-05 
1.5594e-04 1.3088e-04 -4.4397e-04 1.0807e-03 -8.3476e-04 
6.8316e-04 7.7723e-04 -1.1417e-04 9.5760e-04 -3.0026e-04 
1.1700e-04 1.0706e-03 -1.0494e-03 2.7661e-04 8.2322e-04 
-1.0849e-03 -8.8331e-04 7.2277e-04 -1.0773e-05 -9.0357e-04 
5.3553e-05 4.4590e-04 -8.1829e-04 6.3553e-04 -3.4286e-05 
-1.1386e-03 4.7971e-04 -9.3218e-04 -1.2403e-03 7.4086e-05 
-2.3715e-04 -3.5672e-04 -5.3040e-04 -1.8743e-04 -3.3861e-04 

7.2350e-04 
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-1.6223e-04 

-1.0409e-03 

-1.1718e-03 

7.8242e-04 

5.0056e-04 

-1.9399e-04 

-2.7626e-04 

-1.1370e-03 

9.6200e-04 

7.3300e-04 

2.8809e-04 

-5.2053e-04 

4.4933e-04 

-1.1110e-03 

-4.1404G-04 

-1.1844e-03 

2.4103e-04 

1.1023e-03 

2.7077e-04 

5.8862e-04 

-3.5806e-04 
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-3.1610e-01 2.2963e-01 -3.2061e-01 4.0139e-01 -2.5229e-01 6.7411e-02 -2.2470e-01 5.6737e-01 
1.3135e-01 -1.9666e-01 3.1505e-01 -6.0291e-01 -1.5215e-01 1.5086e-01 3.3689e-01 -6.8649e-01 
7.9777e-01 -9.9903e-01 8.5484e-01 1.2175e-02 3.7383e-03 3.8433e-02 3.0846e-01 -7.5029e-01 
1.2810e+00 -1.0755e+00 9.5149e-01 1.2312e-01 1.8941e-01 -1.4497e-01 1.3363e-01 -6.1215e-01 
-8.5333e-01 3.3466e-01 -1.5219e-01 -2.0831e-01 -2.6858e-01 2.8478e-01 1.6885e-01 -1.1032e-01 
-1.2681e+00 9.0306e-01 -8.8854e-01 -4.8392e-01 -7.5349e-01 3.5040e-01 4.7886e-03 2.9949e-01 
9.7834e-01 -4.9863e-01 -5.6525e-01 -2.2713e-01 -1.7508e+00 2.0260e-01 -1.2169e-01 -2.5621e-01 
7.9633e-01 -1.7670e-01 3.4876e-02 -1.0170e-01 -1.5208e-01 3.2056e-01 2.1581e-01 -5.4535e-01 
3.7222e-01 -1.8382e-02 3.2154e-02 -3.8812e-01 1.6331e-01 -1.6856e-01 1.8122e-01 -4.0491e-01 
-9.5562e-01 9.7988e-01 -7.4455e-01 1.1386e-01 3.8388e-01 -3.5766e-02 -1.4971e-01 3.4665e-01 
-3.1480e-01 2.2704e-01 -3.1918e-01 4.0026e-01 -2.5092e-01 6.7657e-02 -2.2274e-01 5.6299e-01 
3.6725e-01 -4.4933e-03 -4.3548e-01 5.3322e-01 4.4322e-01 -6.7127e-01 -1.6592e-01 -4.2390e-01 
-5.1607e-01 9.2353e-01 -6.4104e-01 1.1141e+00 1.4149e+00 1.7260e-02 -3.0108e-01 8.5930e-01 
-4.4256e-02 1.1463e+00 -8.4722e-01 6.1102e-01 1.4761e+00 7.5569e-01 -7.9455e-01 -5.8935e-01 
-7.4489e-01 1.0154e+00 -5.5986e-01 2.8074e-01 1.3081e+00 1.8150e+00 -7.8982e-01 -2.4418e-01 
5.4123e-01 3.6655e-02 4.6218e-01 2.8735e-01 -1.0901e+00 -4.1853e-01 -1.4736e-01 5.3113e-01 
1.0794e+00 -1.8807e-01 -1.5114e-01 -7.3961e-02 1.2625e+00 1.4337e+00 2.3027e-01 8.9496e-01 
-3.4730e-01 -3.0735e-01 7.1268e-01 1.3236e-01 1.6822e-02 1.4332e-01 -9.4403e-03 2.2367e+00 
4.3771e-01 8.0042e-01 -8.4259e-01 -6.4652e-01 8.8339e-01 -5.9256e-01 7.2228e-01 -1.0574e+00 

-2.4211e-02 -1.7723e-01 -5.0308e-01 -4.5861e-01 5.8653e-02 2.4867e-02 1.4401e-01 1.5803e-01 
1.9146e-01 4.2500e-01 5.7145e-01 5.6363e-01 -6.6025e-02 -4.0483e-01 -1.6846e-01 -3.8258e-01 
-7.4413e-01 2.3815e-01 7.2254e-01 4.5308e-01 -5.2058e-01 3.3899e-01 5.4023e-01 3.8105e-01 
-1.1928e+00 1.6432e-01 5.4844e-01 2.1778e-01 -2.6578e-01 5.0970e-01 4.9913e-01 -3.9100e-02 
8.2849e-01 2.6594e-01 2.7497e-01 2.9955e-01 -1.2784e-01 -4.2418e-01 -2.9018e-01 3.9465e-01 
1.4406e+00 3.8365e-01 4.6825e-02 1.7243e-01 1.2958e-01 -9.2550e-01 -5.6086e-01 1.0550e-02 
-2.5275e-01 8.0770e-01 -6.0508e-01 3.6497e-01 6.0278e-01 -2.7589e-01 2.4771e-01 5.2497e-01 
2.2693e-01 6.3736e-01 -2.5691e-01 6.1962e-01 -3.3720e-01 -2.0194e-01 -3.8488e-01 2.7576e-01 
1.7786e-01 2.0608e-01 1.6368e-01 4.4903e-01 1.4422e-01 -1.8575e-01 -5.1231e-01 -1.5200e-01 
1.2200e+00 -2.033ie-01 -9.9143e-01 7.1442e-02 5.2685e-01 -3.7756e-01 -1.2020e+00 -4.1543e-01 
-2.4480e-02 -1.7607e-01 -5.0112e-01 -4.5485e-01 5.7572e-02 2.6017e-02 1.4456e-01 1.5599e-01 
1.4171e-0i 2.8960e-01 4.8353e-02 -4.5726e-01 -4.7434e-01 -4.6233e-01 -1.6653e-01 4.8056e-01 
-4.4651e-01 3.7913e-01 5.2414e-01 -1.6590e+00 1.2439e+00 1.3095e+00 -3.9290e-01 1.8710e+00 
-3.5848e-01 -4.7924e-02 -3.0058e-01 -1.8070e-01 -2.6931e-01 -9.1687e-02 1.3009e+00 1.9244e+00 
-1.3693e-01 -2.1503e-01 -1.9159e-01 2.7247e-01 5.6103e-01 1.4549e-01 1.0297e+00 3.2429e+00 
8.7150e-01 4.4298e-02 -1.1457e-01 3.8687e-01 -8.6415e-01 -9.9676e-01 -3.2860e-01 -2.5255e-01 
1.8051e+00 8.0692e-01 -3.7233e-02 -2.1421e-01 -2.5387e-01 -9.9399e-01 1.5926e-01 4.4309e-01 
-6.3913e-01 -3.0885e-01 1.2243e+00 -4.2634e-01 3.0760e-01 1.3396e-01 -9.6195e-01 -9.0875e-01 
1.3658e-01 9.8995e-01 9.7253e-01 3.2051e-01 -5.5443e-01 -3.0433e-02 1.9349e-01 -1.9895e+00 

-3.7880e-01 4.3797e-01 -1.0686e-01 5.8808e-01 2.0278e-01 -1.7582e-01 3.4097e-01 
2.6075e-01 -6.2766e-01 4.3738e-02 -1.0136e+00 -9.9367e-02 1.1122e-01 2.8442e-02 
-8.5714e-01 6.7266e-01 5.9531e-01 1.8179e-01 8.4424e-01 -1.6981e+00 -7.6197e-01 
-3.4835e-01 1.1392e-01 1.8469e-01 2.0409e-01 1.2285e+00 -1.2752e+00 -3.6082e-01 
-5.3837e-01 4.5388e-01 1.0411e-01 -4.9799e-01 -6.1167e-01 -1.4594e-01 8.6582e-01 
-6.6804e-02 -2.5401e-01 -2.5732e-01 -1.0971e+00 -1.2740e+00 9.9041e-01 7.6413e-01 
1.2432e+00 -5.7881e-01 9.4102e-01 -1.5105e+00 -8.0781e-01 1.1834e+00 1.1312e+00 
4.6708e-01 1.8084e-01 7.4230e-01 -6.3049e-01 -2.4591e-01 -4.3504e-02 5.7615e-01 
5.8110e-01 -3.6522e-01 8.9097e-02 -6.5411e-01 -4.5789e-01 4.8740e-01 -3.6973e-01 
6.8521e-01 6.2807e-01 -3.8450e-01 2.1125e-01 -1.3170e+00 1.2852e+00 6.2896e-01 
-3.7706e-01 4.3660e-01 -1.0591e-01 5.8604e-01 2.0224e-01 -i.7347e-01 3.4746e-01 
-3.3006e-02 3.9988e-01 -4.0592e-01 6.2980e-03 -2.7776e-01 1.8713e-01 1.1528e-01 
-9.2744e-01 -4.7695e-01 -1.2684e+00 -6.3585e-01 1.2271e+00 -7.4696e-01 -9.2228e-01 
1.4432e-01 -6.5728e-01 3.0848e-01 -3.7142e-01 -9.6465e-02 -8.4528e-02 8.4407e-01 
-1.0119e-01 -9.1115e-01 1.6482e+00 -4.0698e-01 3.0852G-01 -8.1419e-01 6.8100e-01 
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-3.7844e-01 2.7015e-01 4.3872e-01 2.6185e-01 -6.5742e-01 2.3042e-01 9.1138e-01 
-1.2311e+00 4.2498e-01 1.1775e+00 -7.0913e-02 -1.5437e+00 -1.1355e+00 7.9473e-01 
-6.3133e-01 -4.2571e-01 1.1527e+00 -1.4127e-01 1.4629e-01 3.9468e-01 5.9494e-01 
-1.9926e-01 1.1836e+00 -9.1188e-01 -8.3045e-01 2.2074e-01 -1.7212e-01 -8.7871e-01 
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The S-F model weights. (See description in Chapter 3, and Fig. 9.) 

10 22 8 

-0.127055 7.49567 -0.634164 -1.11597 0.760231 1.38051 1.84404 1.85738 3.91031 -6.75478 -4.13089 
-1.15991 4.21863 -2.07955 -1.2798 0.950087 1.46787 -1.31505 -1.33188 -0.286187 -4.02435 0.549858 
0.60328 -5.38827 -0.630234 -0.134736 0.768164 -1.35755 1.68847 1.6799 -2.92909 0.0659604 -2.34425 
2.65322 -3.19452 1.18069 0.162061 -0.0773701 -0.32567 0.891966 0.890681 0.839008 0.450627 -0.382486 
0.247585 -1.69633 -2.93716 2.43155 -1.67145 -3.1637 3.74834 3.75101 -3.23694 6.38808 -1.09515 
0.22658 4.68003 -3.00753 0.952964 -0.723596 -1.02982 1.43192 1.41785 1.23459 0.915274 -0.720082 
-0.473219 1.02345 0.213825 -0.13452 0.180426 0.0407675 0.694132 0.693798 -1.04415 0.354356 0.499311 
-0.520337 0.953973 2.62134 -0.668972 0.909709 -0.162397 3.16577 3.16585 0.460676 -4.30974 -2.22326 
2.15827 -2.60255 0.563874 -0.827938 0.516267 1.11137 1.47518 1.47241 2.93692 -1.39766 0.0694464 
2.30729 -2.00734 0.0245156 -0.352291 -0.163611 1.10656 -0.313612 -0.315663 -4.94008 0.962241 -0.508625 
5.73512 4.04712 -3.36963 0.977273 -0.941597 -0.700782 -0.405551 -0.393342 -1.64023 0.434824 -2.66831 
5.19099 2.78447 -0.362627 0.271568 -0.334927 -0.0836266 1.27092 1.27433 3.01069 -2.26078 -1.01064 
0.523946 -2.45347 -4.01896 -1.72962 1.62482 1.40949 -1.15301 -1.15025 -1.7498 -3.34594 0.211599 
2.31924 3.1309 -1.96561 2.04741 -1.44658 -2.38945 1.29298 1.29566 3.04474 4.93033 2.99175 
2.61189 3.04501 -2.76416 0.21846 0.0243123 -0.547823 0.746666 0.740167 -2.27756 0.68891 -0.771956 
0.207378 2.45468 2.56337-0.687311 0.487981 0.677899 0.78158 0.777844 2.56758 -5.04673 -4.44225 
0.251039 1.45833 1.54186 0.40725 0.168889 -1.17037 -0.719205 -0.729095 -0.687839 1.30444 -0.534128 
2.0877 -0.142601 -4.52805 0.557334 -0.726439 -0.116063 -0.779162 -0.767457 -1.78103 9.09966 -0.226484 
4.10106 -0.297321 -0.852439 -0.548436 0.535107 0.647142 0.203496 0.218735 2.69212 3.81538 -2.26511 
-3.71711 -5.48733 0.978903 -1.95211 1.50749 2.09638 4.19544 4.1888 -2.32703 3.057 -3.17475 
-1.76971 -5.0853 3.08085 0.765646 -0.843035 -0.190069 3.70928 3.71828 0.813826 5.12449 0,939194 
-3.63085 2.93406 -3.98303 1.76724 -1.3841 -1.80379 2.20375 2.20716 -8.2196 10.0617 1.69674 

-1.41056 -0.819631 0.0379508 0.110874 -2.01699 1.0654 0.11714 -0.737377 
1.34006 1.42701 0.183514 -0.925341 4.05214 -0.98637 -0.247058 1.77803 
0.562716 -0.629391 -1.2579 1.23881 1.14996 0.694119 -0.677164 -0.624838 
1.34305 -0.0913979 -1.07282 0.41304 0.815762 0.191513 -0.642445 -1.12039 
-0.594187 -0.0840592 0.159672 0.507175 2.14983 0.42006 0.284317 1.57252 
-0.716556 1.21912 1.10391 -1.12946 3.55211 -0.307975 0.226648 3.08283 
1.03531 0.701157 0.24615 0.235559 1.41968 -1.55727 0.650739 1.10568 
-1.57538 -0.410763 1.13183 0.955036 -2.34565 -0.320394 -0.436531 1.24035 

1.78814 0.191725 0.274019 -1.4969 -0.225139 1.21956 -0.23358 1.98136 
-2.5284 1.10437 -0.642994 2.15314 0.317377 -1.34705 0.376865 -0.985477 
-0.378008 0.449059 -0.366897 -0.74713 1.19745 -0.173506 1.44906 2.00464 
-0.691011 0.428664 0.807154 0.298445 -0.0294774 -1.10634 0.278701 -0.436113 
-0.695634 0.614727 -2.11233 -0.0921767 1.9475 1.00577 1.40695 2.7747 
-1.48944 1.44021 -1.86725 1.23937 0.68504 0.444506 0.644304 1.70878 
-2.4431 -0.833274 -0.573073 1.71236 -0.229447 -1.41252 0.703258 -2.10961 
-0.959241 -2.03033 -0.956981 -1.27424 -0.487827 0.942531 1.63479 -0.307449 

-0.407778 0.474981 2.09619 -1.28273 -0.55461 1.62203 0.812927 
0.0514394 -0.785429 -3.40052 2.07075 0.707884 -2.94254 1.02078 
-0.541465 -2.47947 -1.3644 1.40248 0.806213 0.00203451 1.67669 
-0.323574 -1.49327 -1.29357 1.16982 1.90257 -0.514515 0.75554 
-0.285395 -1.50106 -1.13168 0.694205 -1.52813 -0.519244 2.5783 
-0.456586 -0.0130976 -1.84245 0.767391 -1.72713 -2.12588 2.18016 
-0.607895 -0.218026 -1.51166 0.386387 -0.0612476 -1.31173 -1.41075 
0.14689 0.645187 3.2747 -1.46571 -1.55057 1.09223 -1.10574 
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The CR-F model weights. (See description in Chapter 3, and Fig. 11.) 

8 22 8 
-1.3085e+00 4.1527e-01 -4.9996e-01 4.8519e-01 8.5673e-01 8.2592e-01 -2.3364e-02 6.4216e-01 -1.2851e+00 
-2.3064e-01 -2.9761e-01 4.3545e-02 -8.6807e-03 3.5919e-02 3.4539e-01 -2.6283e-01 1.2759e-01 1.0429e-01 
-1.0123e+00 -2.5042e-01 4.6837e-02 -1.6593e-01 i.6497e-01 1.0754e-01 i.9853e-01 -1.1409e-01 -1.1305e-01 
1.5470e+00 -2.8286e-01 2.2316e-03 3.9544e-01 -8.3460e-01 -1.0329e+00 2.8950e-01 -7.5500e-01 -2.8285e-04 
-3.0221e-01 -4.8660e-01 7.1822e-02 5.8579e-02 -1.6121e-01 2.9125e-01 -5.5867e-01 -2.0067e-02 5.7372e-02 
1.6665e-01 2.4806e-01 1.0430e-01 -1.4591e-01 1.0502e-01 2.4912e-01 4.1506e-01 1.67ile-0i 2.2581e-01 
-7.4664e-01 -3.8673e-01 1.9634e-01 -3.2986e-02 3.4573e-01 -2.3749e-01 9.1658e-02 -3.7710e-03 -9.2779e-02 
5.5947e-01 1.0772e+00 1.0832e-01 -1.4477e-01 -5.4242e-01 -1.1024e-01 3.5523e-01 3.4899e-02 1.7341e-01 
-3.3696e-01 -1.0416e-01 9.9488e-03 7.1025e-02 4.3416e-01 -4.2271e-01 2.1227e-01 7.2428e-02 -1.0793e-01 
9.8408e-01 6.8099e-01 -2.3465e-01 -1.4657e-02 -6.5557e-01 4.0963e-01 2.1560e-03 -6.3293e-02 -2.9714e-02 
1.0761e+00 1.1660e+00 9.2165e-01 -8.0447e-02 -8.3345e-01 -1.4926e+00 -2.0338e-01 -4.5279e-01 1.1001e+00 
3.3478e-01 -4.8752e-02 7.4439e-01 -4.3029e-01 -4.0002e-01 2.3346e+00 -5.3189e-01 -1.7633e+00 -1.8205e+00 
-1.1689e-01 -2.7517e-01 5.1753e-02 -6.9093e-03 -3.1421e-01 3.1552e-01 -4.2123e-01 -7.1079e-02 8.7639e-02 
-9.4620e-01 -5.0233e-01 1.9645e-01 -1.1489e-01 2.7971e-02 -2.3217e-01 1.4053e-01 -2.7875e-01 -1.5328e-01 
-3.1704e-02 1.1657e-01 1.1217e-01 2.8498e-02 -7.3922e-01 -1.7413e-01 -5.6170e-01 -4.7003e-01 -2.3646e-01 
9.2502e-01 3.9601e-01 -6.2415e-02 1.7474e-01 -6.9695e-01 -2.6133e-01 -7.1535e-01 1.8393e-01 1.3352e-01 
-2.8436e-01 -3.6855e-01 -2.0884e-01 3.4778e-01 6.7144e-01 -3.6958e-01 -2.1191e-01 2.4428e-01 6.3322e-02 
1.4776e-01 1.8555e-01 1.2818e-01 -1.9532e-01 -8.4283e-02 3.0986e-01 3.2126e-01 7.6469e-02 1.9470e-01 
1.1530e+00 1.7979e+00 -2.1409e+00 7.1231e-01 -1.3149e-01 -1.9106e+00 5.4954e-01 -9.8270e-03 4.8808e-01 
-7.6099e-01 -3.5141e-01 2.7333e-01 -6.4724e-02 4.6243e-01 -2.6881e-01 1.2852e-01 1.1442e-01 6.0353e-03 
7.8154e-03 1.0228e-01 3.1349e-02 8.3215e-02 -4.1447e-01 -3.0586e-01 -3.0943e-01 -3.4594e-01 -2.5241e-01 
-8.7937e-01 -9.3131e-02 1.9187e-01 -3.3264e-01 6.8293e-01 4.3054e-01 1.0443e+00 -1.0816e-01 -5.8095e-03 

-6.3846e-01 -5.4077e-02 -5.3975e-01 1.9549e-01 9.4009e-02 -1.8678e-01 -4.5271e-01 1.3990e-01 
4.4009e-01 -1.8695e-02 9.0300e-01 -3.4669e-01 -4.2904e-02 -4.6317e-02 6.6820e-01 -2.3579e-01 
1.1776e+00 -4.8028e-01 1.5082e-01 -8.3630e-01 -6.2157e-01 2.1350e-01 1.0207e-02 6.6404e-01 
1.0252e+00 -2.6125e-01 2.9964e-01 -9.0724e-01 -3.7762e-01 1.4417e-01 -7.5815e-03 5.9115e-01 
1.0569e-01 -3.4490e-01 1.5979e-01 -4.1644e-02 -2.7762e-01 -2.0522e-01 3.5368e-01 -1.3478e-01 
-7.1237e-01 7.5612e-03 4.2368e-01 2.6330e-01 2.8225e-01 -5.3325e-01 4.2602e-01 -7.3880e-01 
2.4794e-01 3.7074e-02 3.0844e-01 8.6107e-02 -1.0792e-01 9.0499e-02 4.9795e-01 -5.8888e-01 
-3.1206e-01 -2.0041e-01 -4.5001e-01 1.2592e+00 -4.1624e-01 1.3544e-01 -2.1308e-01 8.2736e-04 

-2.8901e-01 5.9986e-01 7.5062e-01 2.0975e-01 1.5122e-01 -4.3764e-01 4.3482e-01 8.8574e-01 
4.2177e-01 -7.6050e-01 -4.0726e-01 -9.2888e-01 -1.3110e-01 9.1335e-01 -8.0266e-02 -8.4468e-01 
1.7783e-01 2.7868e-01 4.6807e-01 -3.6725e-01 -4.3836e-01 1.3128e-01 1.1341e-01 -1.5699e-01 
4.9811e-02 1.7520e-01 8.2500e-01 7.3692e-01 -2.2781e-01 1.1888e-01 8.6072e-02 -1.6260e-01 
4.7089e-01 -2.7729e-01 -2.2385e-01 -1.3451e+00 -3.6135e-01 3.2322e-01 1.8539e-01 9.5008e-02 
2.8451e-01 -6.2107e-01 -4.8002e-01 -2.0400e+00 1.0213e-01 6.4880e-01 4.3402e-01 -2.7652e-01 
4.3754e-01 -8.8115e-01 -9.8837e-01 -3.0553e-01 -2.1949e-01 4.1576e-01 -6.5217e-01 -9.9404e-01 
2.7428e-01 2.2905e-01 -1.3175e+00 -6.5693e-01 -4.3262e-01 -5.3080e-01 -5.7849e-01 1.5647e-01 

-1.3548e-01 -1.0629e-01 -3.2037e-01 -5.2980e-01 2.9425e-01 -1.0945e+00 8.2669e-02 
1.4783e-01 -5.1494e-02 3.2701e-01 6.7662e-01 -7.3155e-03 9.0304e-01 -2.8969e-01 
-4.2594e-01 1.7678e-01 1.2825e+00 -1.5214e-02 2.0179e-01 4.1632e-01 -1.0381e-01 
-3.0353e-01 1.4032e-01 1.0439e+00 -2.0296e-02 9.8248e-02 3.8299e-01 8.7224e-01 
2.4910e-01 -2.8146e-01 -1.1657e-01 3.2828e-01 3.1558e-01 -2.1686e-0i -6.3865e-02 
4.6385e-01 -4.8108e-01 -8.3500e-01 3.1995e-01 4.1195e-01 -9.4128e-02 -1.0561e+00 
5.0057e-01 -2.6914e-02 -6.0055e-02 5.8598e-01 -3.6755e-01 9.8486e-01 -2.1816e-01 
4.0895e-01 -6.0781e-02 -1.6532e+00 -1.7875e-01 -2.6827e-01 -1.8944e-01 1.7007e-01 
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The G-F model weights. (See description in Chapter 3, and Fig. 13.) 

8 22 8 
3.9635e-01 -1.1819e-0i 1.1990e-01 4.7297e-02 6.8424e-01 1.6867e-01 4.0627e-02 1.7927e-01 -2.7389e-02 
-2.1120e-01 2.6307e-02 2.1027e-01 8.3578e-01 3.4510e-01 -4.0099e-01 2.1977e-03 -2.4642e-02 1.1594e-03 
2.1876e-01 3.8927e-02 -9.2947e-02 -5.6541e-01 -1.7004e-02 3.2886e-01 6.4114e-02 -1.0621e-01 -1.1613e-01 
-3.9589e-02 -3.1215e-02 1.1050e-01 1.9587e-01 2.6939e-01 -1.3752e-01 -6.1360e-02 1.1957e-01 -7.8847e-02 
9.7795e-02 -1.9530e-02 1.5257e-01 -1.2097e-01 5.7991e-01 1.0005e-01 -6.4069e-03 2.3650e-01 -1.8350e-01 
5.9582e-01 -3.7518e-01 1.0197e-01 -7.7376e-01 1.3242e-02 3.4225e-01 6.5556e-02 3.5188e-01 1.2881e-01 
-3.7926e-02 1.9661e-01 -3.2178e-01 7.3142e-01 4.3288e-02 -7.5840e-02 -1.0504e-01 -4.0203e-01 -1.5957e-01 
5.8H2e-01 -7.2778e-01 5.4264e-01 -2.0183e-01 -6.3314e-02 -5.6710e-01 1.7305e-01 5.0205e-01 3.5616e-01 
-3.7490e-01 4.8161e-01 -3.4614e-01 1.0624e-01 2.2670e-01 4.1036e-01 -1.2606e-01 -9.0822e-02 -1.9868e-01 
8.8955e-01 -6.3866e-01 2.4577e-01 -2.1785e-01 -4.8934e-02 -1.8940e-01 1.9147e-01 4.1616e-02 2.3956e-01 
-3.3199e-01 -5.9074e-02 5.4182e-02 6.0052e-01 -3.6162e-01 -3.5437e-01 5.5149e-02 1.8272e-01 5.2306e-01 
-1.1728e+00 2.5392e-01 -2.7886e-01 1.7219e-01 -8.8406e-01 -3.4586e-01 -7.4348e-03 3.1259e-01 1.3323e-01 
-3.5564e-01 4.9990e-01 -7.3030e-01 3.0784e-02 -1.6989e-01 8.1115e-01 -1.5908e-01 -1.7856e-01 -3.5237e-06 
1.7257e+00 -7.1754e-01 1.1330e+00 8.5317e-01 1.7983e+00 7.1216e-01 2.3707e-01 6.6065e-02 9.2922e-01 
-3.8516e-01 4.2403e-01 -2.3156e-01 3.3791e-02 2.9117e-01 3.6979e-01 -1.1201e-01 6.1148e-02 -1.4508e-01 
7.0369e-02 7.1846e-02 -9.8501e-02 -4.8885e-01 -2.5226e-01 3.0094e-01 1.1959e-01 -1.1636e-01 5.6178e-02 
-8.0703e-01 1.4423e-01 4.9372e-01 -5.8113e-01 -1.7023e-01 -8.2778e-02 2.0693e-03 6.8994e-01 3.8636e-01 
-1.7019e-01 2.8330e-01 -1.3074e-01 -1.2224e-01 5.3078e-01 4.4328e-01 -3.5626e-02 2.7384e-01 -6.5892e-02 
1.6874e-01 5.7528e-02 -3.2322e-01 -7.7812e-01 -2.2891e-01 3.6952e-01 -6.9956e-02 -5.9895e-03 -1.6553e-01 
2.0956e-01 -5.9177e-02 -1.9887e-01 -3.6298e-02 -5.5850e-01 -1.7990e-02 7.4707e-02 -4.3019e-01 1.9233e-02 
5.8463e-01 -4.8865e-01 4.1125e-01 1.6040e-02 9.5876e-02 -5.9424e-01 1.6604e-01 -1.1970e-01 -4.9299e-02 
-4.8285e-01 3.6944e-01 -1.3890e-01 2.0838e-01 2.3477e-01 1.2599e-01 -1.4574e-01 1.1193e-01 -1.1955e-01 

1.4292e-02 -1.0295e-01 7.3342e-02 -3.1660e-02 -5.7749e-02 3.9225e-01 -5.6376e-02 4.1743e-01 
1.0504e-01 1.7069e-01 -1.4951e-01 2.8328e-02 -2.8861e-02 -3.6544e-01 4.5119e-01 -5.4409e-01 
6.3306e-01 -5.2888e-02 1.2855e-01 2.6707e-01 5.7824e-01 -1.3960e-01 1.3071e-01 -2.6518e-01 
3.7042e-01 -4.1932e-01 3.1155e-01 1.4432e-02 2.5531e-01 2.5779e-01 9.0984e-02 -4.9789e-01 
4.1041e-01 6.7901e-01 -2.8793e-01 2.8348e-01 3.1744e-01 -6.3809e-01 4.2669e-01 -6.8437e-02 
1.9723e-02 6.2713e-01 -4.2148e-01 8.7752e-02 -1.9452e-01 -5.4004e-01 6.5917e-01 -2.6533e-01 
-1.1651e-01 8.0553e-02 -1.2774e-01 -1.9135e-02 -9.4830e-02 -3.6467e-01 1.4181e-01 -5.1476e-01 
-1.4919e-01 4.5215e-01 -5.0964e-01 1.7517e-01 -3.5293e-02 1.0411e-01 -2.9341e-01 8.4315e-01 

-3.5037e-01 6.3959e-01 -1.2006e-01 -3.6800e-01 -5.0586e-01 -3.0729e-01 -3.8044e-01 1.1753e-02 
4.6687e-01 -4.6186e-01 1.7923e-01 1.5995e-01 8.2145e-01 9.8979e-01 4.1245e-01 -1.1242e-01 
3.6393e-01 -4.7969e-01 -4.7636e-01 -8.2896e-01 9.6131e-03 1.0851e+00 4.1218e-01 -2.0845e-01 
3.5227e-01 -2.7041e-01 -4.8293e-01 -7.2434e-01 5.9556e-01 6.0364e-01 3.1420e-01 1.0210e-01 
1.7596e-01 -2.0772e-01 5.5982e-02 -3.0170e-01 -2.5560e-01 8.8961e-01 1.9216e-01 -4.3202e-01 
8.6378e-02 1.4111e-02 4.1512e-01 2.0479e-01 2.6490e-01 9.6098e-01 -3.3355e-02 -3.5664e-01 
3.1280e-01 -5.5907e-01 2.4797e-01 4.8874e-01 6.8654G-01 2.9159e-01 2.9290e-01 -8.4852e-03 

-3.6904e-01 1.7087e-01 8.1458e-01 1.1269e+00 -7.0844e-01 -1.0377e+00 -2.1543e-01 -3.4794e-01 

-5.8112e-01 -3.6364e-01 3.2398e-02 2.4435e-01 6.5241e-01 -3.8798e-01 2.2227e-01 
-2.3613e-01 3.9065e-01 -6.9632e-02 -8.6898e-02 -7.0972e-01 3.6633e-01 -9.6389e-02 
1.3383e-01 5.4889e-01 3.0631e-01 -6.1262e-01 -1.7773e-01 4.4494e-01 -2.300ie-0i 
-1.3344e-01 3.6893e-01 5.1465e-01 -1.7309e-01 -4.7198e-01 1.9743e-01 3.4804e-01 
-3.4340e-01 2.7221e-01 -3.9601e-01 -3.8758e-01 2.0279e-01 2.8684e-01 4.1204e-01 
-1.0733e+00 -1.1974e-01 -5.3997e-01 1.9194e-01 7.8757e-02 3.3267e-03 -2.7296e-01 
3.4084e-01 2.1416e-01 -7.2174e-02 -7.0305e-02 -6.7878e-01 2.8966e-01 -2.4811e-01 
6.5255e-01 -1.4509e-01 -6.3322e-01 -3.1334e-01 3.0072e-01 1.8011e-02 3.2765e-01 
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PCA matrix; SCRG stage. (Equation (16), m = 5, and Fig. 22a.) 

0.159618 0.1654 -0.20805 -0.037133 0.133547 
0.0274142 -0.066437 -0.156469 -0.221949 0.223136 

0.198793 -0.0214514 -0.112075 0.0917318 0.0187815 

-0.201743 0.0171548 0.299546 0.0636182 0.169901 
0.199416 -0.00830103 -0.311838 -0.0612838 -0.167288 

0.20092 -0.0247309 -0.272641 -0.0615542 -0.169591 

0.216538 -0.192759 0.0468129 0.0770674 -0.023721 

0.216535 -0.192758 0.0468053 0.0770583 -0.0237362 

0.0673581 0.0251121 0.199947 0.241355 -0.568132 

0.229409 -0.138192 0.0402738 0.0766758 -0.0266697 

0.230351 -0.034788 -0.00656976 -0.10542 0.12013 

-0.208198 -0.228492 -0.0417592 -0.0523944 -0.0670174 

-0.0473709 -0.306077 -0.0189103 0.249304 0.192866 

-0.147102 0.241517 0.019117 -0.249082 -0.0925428 

-0.238652 -0.0498101 -0.0689535 -0.0944931 0.0384424 

-0.0255072 0.452178 0.0659993 0.0776087 -0.101866 
0.235879 -0.0533121 0.00997333 -0.024467 0.0635341 

-0.1359 -0.302628 -0.0375417 0.163734 -0.22698 

0.234158 -0.121609 0.0351651 -0.0805856 0.0623604 

-0.241237 0.0192555 0.00707626 0.0802587 -0.0219575 

-0.132543 -0.282246 -0.245222 -0.02386 -0.090954 

-0.113967 -0.0613329 -0.257825 0.413421 0.145473 

-0.145925 -0.303864 -0.0516858 -0.282828 -0.193167 

-0.166508 -0.165764 0.124788 -0.236456 -0.126056 

-0.223048 -0.0504161 -0.110932 0.121985 0.053571 
0.0458048 0.123144 -0.235484 0.448119 0.0450694 

0.0433314 -0.190453 0.123731 -0.0367641 0.473028 

0.213087 -0.00731362 0.146798 -0.254939 -0.0786421 
0.234207 -0.121608 0.0356842 -0.0800134 0.0622083 

-0.000240707 -0.021803 -0.494732 -0.15192 -0.167482 

-0.232829 -0.0866261 -0.0963052 -0.112733 0.0676589 

-0.0983638 0.265998 -0.305274 -0.168465 0.177073 

The SCRG-F model weights (reduced). Neural network. (See Fig. 24c. 

5 22 8 

-0.212291 0.636242 0.405612 -0.102343 0.0270011 -0.369558 

0.903363 0.12816 -0.0382012 -0.149195 0.214659 -0.0812161 

-0.0743613 0.0324109 0.252557 0.30627 0.0546047 0.499319 

-0.287316 0.559932 -0.227487 0.333479 -0.117488 -0.238845 

-0.307986 0.538424 -0.226737 0.798282 -0.0476976 -0.710568 

1.14593 -0.0404718 0.316596 -0.407218 0.000441096 0.375826 

1.018 -0.0805636 0.145096 -0.112132 0.119646 0.152085 
0.181288 0.0499232 0.268569 0.276859 0.492209 0.191066 

0.104006 0.0885126 0.186664 0.16187 -0.0256453 0.473498 

-0.096658 -0.0690513 0.188202 -0.0330042 0.224672 0.0736774 
-0.395434 0.38333 -0.623982 0.472178 0.135439 -0.442659 

-0.167439 0.164721 0.148204 0.337246 0.500054 0.241981 

-0.102946 0.177708 0.301189 0.46795 0.436698 0.0395145 

0.727314 -0.0738578 -0.0209484 0.06633 0.0216482 0.0743925 

1.11485 -0.41716 -0.0247441 0.160373 -0.229027 0.37826 

-0.358188 -0.39476 0.0710548 0.129131 -0.0376599 0.292263 
0.00361767 0.349727 0.194663 0.0278302 -0.177939 -0.0587332 
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-0.125872 -0.216326 -0.463101 0.184691 -0.146161 0.184314 
0.943456 0.0991569 -0.0711293 -0.0641769 0.0260406 -0.152439 
-0.203919 -0.461441 -0.166517 0.100423 0.398138 0.440507 
-0.316787 0.288533 0.407736 0.648976 0.102212 -0.235448 
-0.00190544 0.380926 -0.449434 -0.00912081 0.126827 0.104384 

-0.195977 0.435567 -0.0901558 -0.146616    0 
0.0339527 -0.466619 0.114645 0.288451      0 

-0.323832 -0.250982 0.0559532 -0.067652 -0 
-0.106578 -0.32596 -0.10491 -0.208191      -0 
-0.545234 -0.262848 0.0276503 -0.167682 -0 
-0.336341 -0.048784 0.0839886 0.0847236    0 
0.16692 -0.365726 -4.33256e-05 0.253613 0 
0.339574 0.478448 0.368883 0.671932 0 

0276031 0.536281 0.356496 0.120917 
0155207 -0.325813 -0.420136 -0.305594 
350649 -0.0531015 -0.270405 -0.148937 
511 -0.245762 -0.446608 -0.249532 

.203069 -0.418072 -0.155148 -0.0950647 
110685 -0.388709 -0.0311192 0.0237574 
153416 -0.384201 -0.273329 -0.120136 
867826 0.804138 0.627971 0.156716 

0.0151154 0.0551714 -0.022073 0.146392 
0.0972652 0.0585059 0.0896727 -0.0449502 ■ 
0.00326537 -0.0657499 -0.219861 -0.158518 

-0.140745 0.0854018 -0.419018 -0.264365 
-0.114116 -0.00375573 0.18593 -0.0689891    ■ 
0.105119 -0.0182831 0.534822 0.159157 

-0.0707344 0.0968339 0.0422657 -0.0623928 ■ 
0.413761 -0.139295 0.463275 0.357941 

0.0635988 0.319245 0.645183 -0.110362 
•0.150915 -0.332349 -0.638215 0.397588 
-0.222998 -0.322487 -0.163951 0.0771703 
-0.27886 -0.323662 -0.388028 0.234225 
•0.109548 -0.1502 -0.0827298 0.191427 
0.110316 -0.0820985 -0.0778293 0.215018 
•0.0259471 -0.352804 -0.56536 0.0866984 
0.312192 0.442253 0.516712 -0.0223553 

-0.0475867 -0.00338068 0.390094 0.00325717 -0.151858 0.169337 0.546145 
-0.0165077 0.279507 -0.454476 0.285402 
-0.198177 0.00671569 -0.405321 0.0704166 
-0.12581 -0.207311 -0.344315 0.0266495 
-0.326307 0.433979 -0.310711 0.410361 
-0.231717 0.522134 -0.135377 0.546072 
0.159382 -0.0138245 -0.17354 0.143467 
0.458816 0.0866252 0.599321 -0.405217 

0.0207274 -0.144152 0.266908 
-0.252428 -0.23842 0.749672 
-0.342227 -0.356034 -0.183315 
-0.133302 -0.0690613 0.778983 
0.116935 0.170891 0.497744 
0.229118 -0.0717348 -0.487123 
0.669167 0.483067 0.717777 
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PCA matrix; S stage. (Equation (16), m = 5, and Fig. 22b.) 

-0.264551 -0.380696 0.357033 0.0365137 -0.644538 

-0.0721472 -0.368168 -0.815661 -0.29301 -0.307266 

-0.336766 -0.0177291 0.181848 0.276045 -0.350562 

0.371801 0.20131 -0.102648 0.249098 -0.296323 
-0.366919 -0.210447 0.0946907 -0.249582 0.29127 

-0.369562 -0.179984 0.115246 -0.242492 0.283724 

-0.358147 0.280825 -0.225442 0.251732 0.00917964 

-0.358147 0.280827 -0.225435 0.251699 0.00915198 

-0.101235 0.622434 0.107375 -0.690701 -0.334694 

-0.367651 0.238431 -0.167917 0.222887 0.0439469 

The S-F model weights (reduced). Neural network. (See Fig. 25c.) 

5 22 8 
0.697504 -0.24782 0.307243 -0.718174 0.12272 0.000487883 

0.122029 0.3598 0.0179291 0.0133144 0.221071 0.143659 

1.03337 0.161341 -0.423966 -0.15342 0.633621 1.28447 

0.568244 -0.163385 0.368944 -0.130907 0.294691 -0.0673799 

0.974239 -0.0885513 -0.00176282 -0.0487995 0.266608 0.411273 

0.342481 0.275051 -0.00893971 -0.00750058 0.15909 0.13086 

0.706205 -0.126728 1.06392 -0.687881 0.942089 -0.0704915 

0.354673 0.0498161 -0.086518 0.0504487 0.324221 0.520288 

-0.854349 0.934866 -1.67027 1.20199 0.780992 1.45137 

0.22385 0.33943 0.29262 0.468907 0.367417 0.418175 

-0.121911 0.339476 0.229816 -0.05271 0.306521 0.564779 

0.0128956 0.282351 0.501752 0.334301 0.476524 0.585289 

0.301501 0.027116 0.0406484 -0.0446508 0.233116 0.192856 

-0.0819414 0.296866 -0.103295 -0.0723208 0.436073 0.246568 

0.362963 0.175641 0.206965 -0.019416 0.0936066 0.207839 
0.681524 0.195154 0.305505 0.229221 0.0591768 0.251938 

0.973396 0.0672387 -0.496074 0.386353 0.100236 0.262359 

0.915677 0.191142 -0.58008 0.33615 0.465822 1.02115 
0.0325922 0.347395 0.218526 0.232087 0.271079 0.265481 

0.24539 0.472178 1.12563 -0.106211 -1.14426 0.269883 

2.37044 -0.766526 0.0536006 -0.811114 -0.308816 -0.48794 
-0.441332 -0.208276 -0.00286629 0.207217 0.419046 0.581569 

-0.200506--0.0574623 -0.120363 -0.171098 -0.243649 -0.186911 -0.335434 -0.0713263 

0.308289 0.0739632 0.364572 0.132314   0.18511 0.100939 0.260042 0.165147 

0.220789 -0.0476738 0.42208 0.036052    0.0703765 -0.0486274 0.36496 0.118075 

0.26718 -0.096129 0.425436 0.22008     0.189265 -0.0315244 0.518529 0.073002 

0.396751 -0.0312784 0.376982 -0.0480771 -0.0633065 -0.0450011 0.149057 0.0634867 

0.133049 0.13082 0.0694703 -0.097261   -0.0588035 -0.0595977 -0.221344 0.173279 

0.241547 0.0618139 0.0503931 0.164598   0.151097 0.0479629 0.180861 0.0607325 

-0.0176619 0.292044 -0.57452 -0.334658  -0.40728 0.183023 -0.869271 -0.00414274 

0.0753371 0.0970103 0.100841 0.253254  -0.121684 -0.0520827 -0.0793354 -0.156445 
0.0769915 -0.100714 -0.0550542 -0.143481 0.0906103 0.20446 0.0450487 -0.156413 

0.804288 -0.18739 0.0762514 -0.0981745  0.0627184 -0.0105436 0.0555074 -0.130914 

0.877441 -0.200726 -0.201867 -0.308425  0.0296315 -0.23739 0.0856514 -0.0649629 

0.712155 -0.0195168 0.0899889 0.165317  0.154508 0.311739 -0.104048 -0.283428 

-0.0127152 0.187056 0.11761 0.194581     0.0130432 0.290985 -0.121896 -0.353706 

-0.148171 -0.0271748 -0.016034 -0.186677 0.16929 -0.0306781 0.0340783 -0.0202074 

-1.57432 0.29136 0.527125 0.41191       0.0381834 0.244978 0.159092 0.0732612 



-0.402442 -0.339509 0.0884796 -0.398597 

0.317519 0.454457 -0.123496 0.53532 

0.116018 0.158359 -0.109153 0.465186 

0.166311 0.27696 -0.137615 0.647967 

0.0770605 0.185007 0.0442032 0.15663 

0.00139097 0.132863 0.105158 -0.0636119 

0.379375 0.364096 -0.0175316 0.428826 

-0.191997 -0.417126 0.287856 -0.861623 

-0.431954 0.296948 0.79694 

0.65565 0.06173 -0.0811966 

0.306475 0.125104 0.439372 

0.0643326 -0.148442 -0.440816 

0.824449 0.404757 0.469439 

0.990259 0.533075 0.394152 

0.432948 -0.211912 -0.776385 

-0.44302 0.0338256 0.907776 
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PCA matrix; CR stage. (Equation (16), m = 5, and Fig. 23a. 

-0.448948 0.139323 0.240016 -0.172528 0.237394 
0.445653 0.175543 0.212273 -0.116833 -0.153868 
0.13128 0.511786 -0.60397 -0.304541 0.501535 
0.245948 -0.475425 0.345467 -0.0921352 0.741082 
0.451165 -0.0395878 0.0784338 -0.455918 -0.10307 
-0.0230495 -0.562008 -0.604314 0.22882 0.0562235 
-0.451868 0.168205 0.173525 0.0263903 0.228193 
0.337414 0.340746 0.108387 0.770995 0.231025 

The CR-F model weights (reduced). Neural network. (See Fig. 26c.) 

5 22 8 

0.389245 0.207724 0.0415545 -0.0657605 -0.0911199 0.177098 

0.556514 0.246312 -0.0270832 0.14962 -0.0787796 0.374432 

-0.11515 0.398386 0.327903 0.0850237 0.049606 0.434496 

0.169985 0.137178 -0.0648788 -0.0749181 -0.0538662 0.455194 

0.571153 -0.0275301 0.145062 -0.0638335 0.0575497 0.0258657 

0.323891 0.0550081 0.328979 0.00858497 0.0238722 0.372199 

0.432874 0.186945 0.378456 -0.0393837 0.0725278 0.0637182 

0.745408 -0.0909882 -0.0141133 0.153646 0.205203 -0.0365793 

-0.0433338 0.395188 0.393226 0.221382 0.258252 0.453381 

0.257435 0.261831 0.237446 0.105636 0.223887 0.208202 

-0.0181901 0.464977 0.350104 -0.0167638 -0.0296569 0.39578 

0.3443 0.0267507 0.200247 -0.0928293 0.0582661 0.230738 

0.351432 0.0828723 0.246301 0.286089 -0.0122994 0.026115 

0.606732 0.0907523 0.128296 -0.087276 -0.06255 0.374406 

0.869093 0.093621 0.0341711 -0.149775 -0.0712468 0.190945 

-0.301866 0.441225 0.199308 0.227278 0.300515 0.460712 
0.652242 0.261664 -0.0262619 0.0549472 -0.00879476 0.371632 

0.713752 0.144663 0.0217355 0.122371 0.212572 -0.0244389 

0.0720438 0.0963423 0.350154 0.221248 0.0564427 0.301451 

0.915977 0.198816 -0.0248261 0.0970856 0.0118174 0.213779 

-0.198608 0.447342 0.319463 0.351251 0.333672 0.420636 

0.850964 -0.0815643 0.180848 -0.098453 -0.212108 0.285967 

-0.0242737 -0.176137 0.32313 0.0715549 

0.140564 0.274829 -0.124517 0.0979774 

0.250235 0.118432 0.197303 0.126138 

0.153559 0.181229 0.00845995 0.0807852 

0.241963 0.215835 0.194328 0.291392 
0.0660216 0.203595 -0.00865076 0.250489 

0.158535 0.000275177 -0.202597 0.0374932 

-0.191713 -0.133301 0.0604352 0.102431 

-0.265815 -0.0757016 -0.0490584 -0.283879 

0.272972 0.116347 0.0751988 0.387362 
0.070921 0.196187 0.0861898 0.109307 

0.0967942 0.0696777 0.159259 0.108985 

0.0459251 0.213035 0.141513 -0.0199025 
0.185261 0.0856701 -0.0182208 0.0500239 

0.176196 -0.0509921 0.0314442 0.396615 

-0.159806 -0.103244 -0.278701 -0.188997 

0.187427  0.005033 0.274622 -0.0127972 

-0.127479 0.00439869 -0.115353 0.10462 

0.151064 0.0266176 0.101458 0.103773 

-0.0584451 0.104179 0.0996144 0.194118 

0.149129 0.0826895 0.0986011 0.237301 

-0.0871016 -0.123943 -0.372055 0.426036 

0.163146 0.276823 0.452728 -0.309838 

0.0102432 0.16231 0.172464 0.0294783 

0.157008 0.143824 0.254601 -0.0548777 

-0.0511785 0.315516 0.285489 0.0170466 

-0.0658423 0.0500124 0.0597081 0.0531885   0.0351134 0.117671 0.207657 -0.00179809 

-0.236127 -0.0604804 -0.217869 0.0841636   0.0554528 0.196704 0.22584 -0.258439 

0.0605342 -0.0409829 -0.0981006 -0.0991666 -0.105949 -0.174397 -0.357512 0.0897234 
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-0.247845 -0.281897 0.0838995 -0.420879 
0.291785 0.267586 -0.03842 0.315605 
0.195181 0.0167142 0.0702237 0.152829 
0.0750051 0.163271 -0.00346035 0.205992 
0.214821 0.0812164 0.0300335 0.156272 
0.119315 0.0993763 0.034942 0.189803 
0.125933 0.315823 -0.0698111 0.305848 

-0.208361 -0.22047 0.0292588 -0.353433 

0.25089 -0.265533 0.581445 
-0.206467 0.427424 -0.0227673 
0.098963 0.194167 0.552898 

-0.0170638 0.324778 -0.280575 
0.0212183 0.285357 0.491474 

-0.180566 0.215189 0.341663 
-0.345833 0.341529 -0.616239 
0.142276 -0.304182 0.477759 
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PCA matrix; G stage. (Equation (16), m = 5, and Fig. 23b.) 

-0.424773 0.175895 0.333093 -0.184241 0.356866 
0.454216 -0.0411636 -0.240762 0.248895 -0.00692783 
0.352203 0.108908 0.509722 -0.411096 -0.295344 
0.276559 -0.517806 0.418611 -0.0259437 0.628244 
0.341344 0.492898 0.163561 -0.323765 -0.0648916 
0.321134 0.519782 -0.279289 0.0891611 0.582483 
-0.0713927 0.324747 0.535914 0.756366 -0.0877131 
-0.433572 0.262296 -0.0638189 -0.222644 0.198718 

The G-F model weights (reduced). Neural network. (See Fig. 27c.) 

5 22 8 

0.352254 -0.0215603 -0.306115 0.218443 0.32653 0.0293625 
0.184781 0.619208 -0.0831976 0.335191 0.34416 0.122681 
0.0214977 -0.200823 0.398183 0.29667 0.0791597 0.130623 
-0.081146 0.557309 0.0948687 0.0393736 0.329603 0.251947 
0.036671 -0.0351811 0.485662 -0.024069 0.137647 0.111635 
0.00396835 0.770082 0.152859 -0.293546 0.16043 0.424153 
0.0103593 0.371252 0.517976 -0.112411 0.262395 0.134812 
0.817603 0.0618705 -0.196402 -0.100552 0.0700276 0.294046 
0.317632 -0.344212 0.451668 0.303968 0.159794 0.0794899 
0.817632 -0.383377 0.10123 0.19705 0.319004 0.27046 
0.562979 0.407069 -0.0238524 0.165003 0.11271 0.0998056 
0.959109 0.280213 -0.473058 0.180773 -0.125764 -0.0376375 
0.831392 0.0410714 -0.157449 0.0406729 -0.0094954 -0.0420811 
0.653407 0.436003 0.00963968 0.167838 0.0876838 0.108159 
0.306334 -0.164048 0.409516 -0.225334 -0.000655092 0.31307 
0.785771 0.395003 -0.274237 0.0990463 0.0407331 -0.0390799 
0.328589 0.0556629 0.494084 -0.256926 0.050106 0.218838 
-0.191236 0.767578 0.304391 0.0210292 0.228535 0.286838 
0.556873 -0.251106 0.212693 0.0478469 0.241821 0.435858 
0.71165 0.335114 -0.0966616 0.0372082 0.292284 0.294004 
0.610391 0.260725 0.266514 -0.0797969 0.187029 0.261124 
0.496942 0.365262 0.00865438 -0.133312 -0.0556482 0.198533 

-0.240816 -0.0312634 0.190091 0.164308 0.233149 0.313814 0.3027 -0.356604 
0.260365 0.0699196 -0.0291448 -0.136068 -0.101222 -0.134498 -0.15901 0.424107 
-0.0280397 0.026553 -0.0812633 0.0942142 0.00182564 0.394992 0.0450524 0.199105 
0.241435 0.192335 -0.19861 0.189182 -0.0787769 0.398888 0.0634199 0.321024 
-0.152842 -0.265184 0.0635499 -0.12698 0.244963 0.134784 0.211796 0.31134 
0.0191641 -0.280692 0.252961 -0.253869 0.199426 -0.169754 0.00528301 0.245842 
0.290719 -0.0759005 0.0149524 -0.23491 -0.0750058 -0.287336 -0.270718 0.326087 
0.0384547 -0.417371 0.23761 -0.175097 0.0961122 -0.41915 -0.0919902 -0.259558 

-0.0821715 -0.399394 -0.217278 -0.509847 -0.379812 -0.231679 0.0795737 -0.452052 
0.0863663 0.486521 0.176248 0.603208 0.372494 0.175164 0.117332 0.28227 
-0.167149 -0.0715639 0.19001 0.166504 0.161366 0.113333 0.240016 0.14816 
-0.328198 -0.151447 0.172146 0.479177 0.20885 0.259965 -0.0996201 0.335464 
0.154391 0.190984 -0.0160404 0.130835 0.177699 0.065028 0.375638 0.0934839 
0.392618 0.507473 -0.0105717 -0.0368717 0.16066 0.0013757 0.418643 -0.092062 
0.0784083 0.315307 0.133701 0.493565 0.410948 0.156802 -0.0455716 0.355164 
0.2413 -0.00638985 -0.3693 -0.496274 -0.26988 -0.393569 0.132571 -0.501397 
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0.0586728 0.366481 -0.103733 -0.297078 -0.0331113 -0.143032 0.776189 
-0.0135813 -0.318338 0.306381 0.239489 0.178714 0.186107 -0.0122934 
0.12445      0.0771469 0.0799623 0.109081 0.173061 0.267281 0.687942 
0.0318706 0.265521 -0.138162 0.264527 0.0837886 0.255869 -0.291418 
0.467576    -0.00623296 0.20984 0.09599 0.298499 0.293089 0.683646 
0.346385 -0.300611 0.39118 0.0507155 0.19832 -0.0173745 0.407712 
-0.18292    -0.355125 0.135098 0.15101 0.0638429 0.0546078 -0.72919 
-0.036026 -0.285496 0.056554 -0.333959 -0.293954 -0.27836 0.723344 
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1. Introduction 
DESCENT is a software package for enhancing yield through design centering. The package uses 

input/output data measured for manufacturing process and implements a design centering algorithm 
described in [18,19]. Fusion of principal component analysis (PCA) and neural network model 
(NNM) allows for accurate modeling even for nonlinear and/or high dimensional processes with a 
relatively modest amount of data characterizing the process. 

The package source code is written in C++. The source code can be compiled both under MS-DOS 
and Unix. It also includes ready to use programs compiled for DOS. Minimum system requirements 
for PC are 640KB RAM and 1MB disk space. The use of 486DX or faster CPU is strongly recom- 
mended especially for design centering cases of high dimensionality and large amount of data vec- 
tors. More amount of RAM and disk space may be necessary to develop large models using very 
large neural network structures or large data files. 

2. Overview of the package 
The package consists of the five following programs, each performing specific task involved in 

design centering: 
• DES.CFG 
• DES_PREP 
• DES.CENT 
• DES.TRY 
• DES.EVAL 

Program DES_CFG creates the customized configuration file process.ini for one of the chosen 
strategies for model development. This file is used by other parts of the package. The use of 
DES_CENT is optional because the default configuration file for a default strategy is created by oth- 
er programs from the package. However, the use of the program is necessary if the user wants to 
manually customize the configuration before developing the first model. 

In order to make this description of the software package clear, all variables affecting the final 
product as well as parameters of semi-products are called input settings. The output parameters of 
the manufactured products are called output parameters here. The dependence between input set- 
tings and output parameters is called the model of the process. Fig. 1 illustrates this terminology. 

Input settings PROCESS 
MODEL 

Output parameters w 

Fig. 1. The model of the process and its input and output variables. 

Program DES_PREP develops the neural network model (NNM) of the process for the collected 
data. The model is later used for design centering and process center evaluation and is stored in two 
files: process.pca and process.net. 

Program DES_CENT calculates input settings which produce the maximum yield of the process 
given the output parameter specifications and their tolerances. 
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Program DES_TRY estimates predicted process yield given the evaluated input settings and out- 
put parameters, both with their tolerances. It uses already developed NNM. 

Program DES_EVAL evaluates the actual yield of the product from the data provided by the user, 
given the output parameter specifications and their tolerances. 

Fig. 2 illustrates the data flow among the programs and the complete process of design centering. 

DES CFG 

T 

Data 
describing 
the process 

process . im I xl.dat yl.dat xt.dat yt.dat 
DES PREP 

Design 
specification 

process.pea 
process.net target.dat 

Settings 
Accuracy 

in-cent.out 

in-fit.out 

input deviation 

center.dat 

Fig. 2. The data flow in the design centering procedure. 

The programs and data files will be explained in the following sections. 

2.1.       Controlling the design centering algorithm with DES_CFG 

Program DES_CFG generates the customized control file process.ini which is described in detail 
in Section 3, and resets the model of the process in case it exists. The configuration file process.ini 
is an ASCII file and can be modified using any plain text editor. 

When the user runs DES_CFG, he is asked only three questions about the model. Then the com- 
plete configuration file is generated with default values of the parameters for the following selected 
options: 
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A: Whether to use the PCA for input dimension reduction 
B: Select the training strategy 
C: Select the learning method 

Re A: It is recommended to use the PCA analysis. This allows for dimensionality reduction of 
the NNM. A NNM with a smaller number of inputs requires less training data for good generaliza- 
tion. If you decide not to use PCA you can still try to reduce internal dimensionality. In that case 
inputs with the smallest correlation with outputs would be discarded. 

Re B: The user can choose among the following training strategies: 
A  - best of all generalization 
B   - best generalization 
F   - best fit to the training data 
P   - smallest training error followed by network pruning 
S   - smallest training error. 

Recommended selection is A. See Section 3.1 for details. 

Re C: The package supports several training methods: 
D   - delta bar delta (varying localized learning constant and momentum) 
L   - lambda learning method (JMZ) 
Q  - quickprop (simplified version) 
S   - standard error-backpropagation (including pruning methods) 

Recommended selection is S for standard learning. See Section 3.4 for details. 

2.2.       Developing the model of the fabrication process with DES_PREP 

Program DES_PREP generates the NNM of the manufacturing process necessary for design cen- 
tering. This step is the most time consuming operation. To develop the model you will need some 
data describing it. To run the program type: 
des_prep xl.dat yl.dat xt.dat yt.dat R H 

where: 

xl.dat is the file containing input vectors of the learning data set; 
yl.dat is the file containing output vectors of the learning data set; 
xt.dat is the file containing input vectors of the testing data set; 
yt.dat is the file containing input vectors of the testing data set; 
R is the number of inputs of the NNM after PCA input reduction; 
H is the number of hidden neurons in the NNM. 

The program reads its configuration from the file process.ini. If this file is not found, one with 
default settings is created. See Section 3 for detailed description of the configuration file. 

Let us denote the original input data dimension as I and output data dimension as K. It is obvious 
that the PC A-reduced number of inputs in the new coordinates R should be greater than zero and 
not higher than I. The order of entries in the input vector is changed inside the model, so that defining 



R<I results in discarding the least meaningful dimensions. There are two methods used for the task 
of ranking the inputs: either values of eigenvalues from PCA if PC A is set to be active, or the input- 
output correlation if PCA is disabled. In the latter case the PCA transformation between inputs and 
PCA-reduced inputs is repaced by the transformation which only changes the order of entries in the 
input vector. 

The number of hidden neurons H in NNM depends on the complexity of the data relationship, and 
can not yet be solved analytically [3]. The best way for finding H is to try to use different numbers 
and choose one which allows the development of the most accurate model. Often, for our size of 
models H between 5 and 10 is sufficient and therefore could be used on the first try. 

When the model of the process is successfully created, two files containing model description are 
produced: process.pca and process.net. Those files are then used by other programs from the pack- 
age. They remain unchanged until a new model is created. 

The structure of data for the process model development 

To generate data for DES_PREP, the measured data needs to be split into two sets: training data 
set and testing data set. Each set should consist of two files: first with input vectors; and second with 
output vectors. The following example shows the data files for the two dimensional function approx- 
imator for mapping y = x\ + Q.6x\ (numberofinputsI=2,numberofoutputsK=l). Althoughthis" 
particular example is not relevant for this modeling effort, it illustrates the structure of the data files. 
The following Table 1 shows the contents of the data files. 

TABLE 1. An example of learning and testing data set. 

learning data set testing data set 

xl.dat - inputs yl.dat - outputs xt.dat - inputs yt.dat - outputs 

-10.0 -10.0 160.0 -7.5 -7.5 90.0 
-10.0 -5.0 115.0 -7.5 -2.5 60.0 
-10.0 0.0 100.0 -7.5 2.5 60.0 
-10.0 5.0 115.0 -7.5 7.5 90.0 
—10.0 10.0 160.0 -2.5 -7.5 40.0 

-5.0 -10.0 85.0 -2.5 -2.5 10.0 
-5.0 -5.0 40.0 -2.5 2.5 10.0 
-5.0 0.0 25.0 -2.5 7.5 40.0 
-5.0 5.0 40.0 2.5 -7.5 40.0 
-5.0 10.0 85.0 2.5 -2.5 10.0 
0.0 -10.0 60.0 2.5 2.5 10.0 
0.0 -5.0 15.0 2.5 7.5 40.0 
0.0 0.0 0.0 7.5 -7.5 90.0 
0.0 5.0 15.0 7.5 -2.5 60.0 
0.0 10.0 60.0 7.5 2.5 60.0 
5.0 -10.0 85.0 7.5 7.5 90.0 
5.0 -5.0 40.0 
5.0 0.0 25.0 
5.0 5.0 40.0 
5.0 10.0 85.0 

10.0 -10.0 160.0 
10.0 -5.0 115.0 
10.0 0.0 100.0 
10.0 5.0 115.0 
10.0 10.0 . 160.0 
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The dimensionalities of data files are checked by programs during reading of files. 

2.3. Calculating the optimal design center with DES_CENT 

Program DES_CENT is the central part of the package. It implements the process centering algo- 
rithm described in [18, 19]. The model developed using DES_PREP program is used to find the pro- 
cess input settings which optimize the yield of the final product. The calculations are performed for 
the user-specified desired output parameters and acceptable tolerances. To run the program type: 
des_cent target.dat 

where: 
target, dat is the file with desired output parameters. This file contains a vector of target 

output values and a vector of relative (percent) tolerances for each 
component. See an example in the following subsection. 

The program also reads the process model from files process.pca and process.net, and configura- 
tion from process.ini. 

The results of design centering calculations are written to four new files: 
in-cent.out containing input settings producing the output parameters closest to the 

specified in target, dat. 
out-cent.out containing output parameters corresponding to input setting from in-cent.out. - 
in-fit.out containing input settings optimized for maximum yield of the product. 
out-fit.out containing output parameters corresponding to settings from in-fit.out. 
Note that files with these names would be overwritten if they existed before running DES_CENT. 

Sometimes it is not possible to find a point which satisfies all of the output parameters specified 
in the design specification file at the same time. In such case the closest possible input settings are 
found and reported in in-cent.out instead of exact solution. These settings are then used as an initial 
point in the yield maximization procedure. The yield is maximized using the specification from tar- 
get.dat, output parameters and their tolerances. The result settings of this iterative procedure are 
stored in in-fit. out. 

The structure of the design target specification file targetdat 

The structure of the design specification file is similar to one of files containing data for modeling. 
The file consists of two lines. The vector of desired output parameters is stored in the first line. A 
vector in which the entries are relative tolerances for each parameter from the previous line is stored 
in the next line. The numbers within each vector are white space delimited. 

For example: 
100.0 

0.05 

indicates that we desire the first and only one output parameter in our example to be close to 100.0 
within the 5% range (95.0.. 105.0). 

2.4. Testing the new design center with DES_TRY 

After the optimum input settings are found by DES_CENT, they can be checked against the esti- 
mated improvement in yield. Program DES_TRY can statistically evaluate the fabrication yield us- 
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ing an already developed process model for the given input settings and their standard deviations, 
and for specified output parameters and their tolerances. To perform a test using DES_TRY type: 
des_try center.dat   target.dat  C 

where: 
center.dat is the file containing input settings and their tolerances. Files in-cent.out or 

in-fit.out can be used to build center.dat if vector of absolute setting 
tolerances is appended. See an example in the following subsection. 

targetdat is the file with output parameter specifications as described in Section 2.3. 
C is the number of random drawings requested to estimate the yield. 

Each tolerance is treated as a variance of the input setting under the assumption of Gaussian dis- 
tribution. Because of the unknown actual probability distribution of the input data, the actual results 
from the process may differ to some extent from simulations. 

The structure of the design center specification file center.dat 
The design center specification file center.dat has the same structure as the design target specifica- 

tion file center.dat with the exception that absolute deviation of each setting is used instead of relative 
tolerances. 

Fcr example: 
8.00   -7.76 
0.2        0.1 

indicates that we desire the first input setting to be close to 8.0 within the range of 0.2 (7.8..8.2), and 
the second input setting to be close to -7.76 within the range of 0.1 (-7.86.-7.66). 

2.5.        Evaluating the new design center with DES_EVAL 

Program DES_EVAL evaluates the fabrication yield for actual data. Instead of simulating results 
of different randomly distributed input settings, the actual results are used. To perform the evaluation 
using DES_EVAL type: 
des_eval  output.dat   target.dat   results.dat 

where: 
output.dat is the file containing the output parameters, similar to yl.dat. 
targetdat is the output target file, same as in Section 2.4. 
results.dat is the file to which the yield results are written. 

3. User controlled parameters 

All pieces of software use a common profile file process.ini. This file is an ASCII text file and 
can be modified using plain text editor. Modification of data stored in that file would affect the model 
development and design centering. The following sample profile file contains default parameters 
and their brief description: 
;PROCESS.INI 
[MODEL] 
pca=l ; 0 - disables,  1 - 
learning-mode=B best ;  A, B - best gen., 
input-sealing-type=l ; -1 - reserved, 0 - 

1 - enables 
F - best fit, S - smallest error 
no scaling, 1 - normalization, 
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output-sealing-type= 
debug=0 
[TERMINATION] 

mse=0.01 
max=0.05 
misc=0 
iter=10000 
[HIDDEN NEURON] 
type=0 
zero=0 .05 
max-net=50.0 
[OUTPUT NEURON] 
type=0 
zero=0 .05 
max-net=50.0 
[LEARNING] 
constant=0.1 
momentum=0.8 
suppression^ . 0 
facilitation=0 .0 
decay=0.0 
decaysquare=0.0 
damon=0.0 
small-weight=0.001 
type=S standard 
[INVERSION] 
constant=0.1 
end-error=lE-03 
end-derivative=lE-06 
end-iteration=10 0 0 
[DBD LEARNING] 

con-vex=0.70 
min-eta=lE-6 
max-eta=0 
inc-eta=0 
dec-eta=0. 
min-mom=0. 
max-mom=0. 
inc-mom=0. 
dec-mom=0. 

50 
10 
90 
00 
80 
10 
90 

[OPTIMIZE CENTER] 
max-pts-iter=100000 
max-bad-pts=5 00 0 
min-bad-pts=100 
min-sigma=0.01 
inc-sigma=l.01 
max-sigma=l 
opt-constant=l.0 
opt-end-field=lE-07 
opt-iter-max=20000 
debug=0 

2 - into -1..+1 range, .9 - into -0.9..+0.9 range 
debug=l allows creation of intermediate files *.dbg 

Logic AND is performed on all conditions 
Stop training when specified MSE is achieved 
Stop when the maximum error is less than specified 
Used only with NN classifiers, leave unchanged (=0) 
Maximum number of iterations, 0=no restrictions 

The hidden neuron type 
Minimum value of the activation fn. derivative 
To prevent overflow in exp() 

The output neuron type 
Minimum value of the activation fn. derivative 
To prevent overflow in exp() 

Learning constant 0<T]<1 
Momentum constant 0<=|i<l 
Used only in CSDF, otherwise £=0 
Used only in CSDF, otherwise y=0 
Used only in Structural Learning, otherwise y=0 
Used only in quickprop, =lE-5, otherwise =0. 
Left for future development 
Not used in this package, otherwise =0.001 
Learning type, e.g. S - EBP, D - DBD 

Inversion constant 0<^<1 
Inversion accuracy, (=lE-03) 
Local minima detection (=lE-06) 
Maximum number of iterations (0=no restriction) 

Parameters from this section are used only by 
Delta Bar Delta Learning Algorithm 
Convex constant in Delta Bar Delta training, (6=0.7) 
Minimum learning constant 
Maximum learning constant to prevent "wild jumps" 
Linear increase of learning constant,    (0^=0.1) 
Geometric decrease of learning constant, (-^„=0 . 9) 
Minimum momentum 
Maximum momentum to prevent "wild jumps,"(<1) 
Linear increase of momentum, (a^=0.1) 
Geometric decrease of momentum, (^n=0.9) 

Maximum number of iterations during data collection 
Maximum number of "bad" points for centering 
Minimum numbers of "bad" points to run centering 
Initial variance (sigma) during centering 
Geometric increase factor for centering 
Final (maximum) variance during centering 
Center optimization constant 
Optimization termination condition 
Maximum number of iterations during centering 
debug=l allows creation of intermediate files *.dbg 

3.1.        The training strategies 

The strategy of model development can be controlled by parameters stored in sections [MODEL] 
and section [TERMINATION]. You can choose among four training strategies: 

A  best of all generalization 
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B   best generalization (also called "stopped training") 
F   best fit to the training data 
P   smallest training error followed by network pruning 
S   smallest training error. 

Recommended selection is B for the best generalization. 

The best of all generalization 

In the best of all generalization strategy, while the model is developed using the training data set 
it is also tested at the same time using testing data set. The NNM with the minimum MSE error over 
the testing data set during the training is stored and then retrieved when the learning is finished. The 
search for the NNM is continued until the termination condition is reached for the learning data set. 
[MODEL] 
learning-mode=A best  of  all   generalization 

The best generalization 

In the best generalization strategy, while the model is developed using the training data set it is 
also tested at the same time using testing data set. The NNM training is iterative, but it stops when 
the minimum MSE error is reached over the testing data set. If the training would have been contin-- 
ued beyond that point, the NNM would start memorizing data instead of trying to generalize them. 
However, there is danger that the best generalization can not be reached if learning step is too large. 
To prevent this, do not set the learning constant larger than 0.1 and do not use the delta bar delta 
learning rule, or use the best of all generalization strategy. 
[MODEL] 
learning-mode=B  best  generalization 

The best fit to the training data 

When no accurate NNM can be developed due to complex data relationship and data points are 
collected without noise, the best fit strategy may be a solution. In such case, the learning data set 
is selected to be very small at the beginning, and then increased by including more data entries which 
produce largest error as it is described in [12]. This strategy promotes a uniform approximation be- 
cause data entries with larger error are selected as more important during the training. The search 
for the NNM is continued until the termination condition is reached for the learning data set. 
[MODEL] 
learning-mode=F best fit 

Smallest training error followed by pruning 

When learning with subsequent pruning is chosen as described in Section 3.4 below, the developed 
NNM is characterized by very small values of redundant weights. Those weights can be removed 
without harm or with negligible deterioration of performance, what in turn can enable removal of 
unconnected hidden neurons [7, 10]. Thus, the size of the NNM can be reduced. The pruning meth- 
ods in this package are used together with the smallest training error strategy. 
[MODEL] 
learning-mode=P pruning 
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Smallest training error 

When there are no separate learning and testing data sets, select the smallest learning error strategy 
- S. This is the standard approach to NNM training. This strategy works with all learning methods. 
The search for the NNM is continued until the termination condition is reached for the learning data 
set. 
[MODEL] 
learning-mode=S standard 

Input and output scaling 

The MFNN inside the NNM may require data scaling during the process of model development. 
Input data to be processed by PCA are always rescaled so that their mean value is zero, and standard 
deviation equal to one (input-scaling-type=i). Output data, however, can be rescaled in several 
ways: 

• Scaling disabled: output-scaling-type=-l 
• No scaling performed: output-scaiing-type=o 
• Statistical Scaling: output-scaling-type=l 
• Scaling into -1..+1 range:      output-sealing-type=2 
• Scaling into -9.+.9 range:     output-sealing-type=9 

The recommended output scaling type is "9" for bipolar continuous output neurons, and "1" for fully" 
linear output neurons. See section 3.3 for details about types of neurons. 
[MODEL] 
input-sealing-type=l 
output-sealing-type=9 

3.2. The termination conditions 

All three implemented methods also use additional termination criteria based on the training error 
and stored in the profile file section [TERMINATION]. The NNM training will be finished if all of 
the following criteria are satisfied: 

• Mean Square Error per pattern per dimension (mse) not exceeded; 
• Maximum error over all patterns and all dimensions (max) not exceeded; 
• Number of patterns with maximum error larger than 0.1 (misc) not exceeded; 
• Number of training cycles (iter) reached; 

Logic AND is performed on all conditions. The errors are calculated for the rescaled NNM output. 
If scaling is performed the error is calculated for the scaled outputs directly. Number of iterations 
set to 0 means no maximum number of iterations will be enforced. 
[TERMINATION] 
mse=0.01 
max=0.0 5 
misc=0 
iter=10000 

3.3. The type of neuron 

Data in sections [HIDDEN NEURON] and [OUTPUT NEURON] control the neuron type and its 
minimum derivative used during training. The neurons in the NNM are hidden (non-output) and out- 
put neurons. Four types of neuron activation functions are implemented: 
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•   Continuous bipolar: type=o o =      2 _ntt - l 

Hyperbolic tangent: type=i o = -—2__ - 1 • 

• 
'- 1,    net < 1 

Linear with saturation: type=2 o = <j + L   net > 1 
ner, otherwise 

•   Fully linear: type=3 o = net 

To speed up the process of training, neuron's derivative smaller than that specified by "zero" are 
replaced by that value. Large activation values may cause numeric overflow in the neuron's activa- 
tion function. To prevent occurrence of this effect, the maximum activation value is defined by 
"max-net". Both negative and positive activations are truncated. 
[NEURON] 
type=0 
zero=0.05 
max-net=50.0 

3.4.       The learning methods 

The package supports several training methods: 
S   standard error-backpropagation (including pruning methods) 
Q  quickprop (simplified version) 
L   lambda learning method 
D   delta bar delta (varying localized learning constant and momentum) 

Recommended selection is S - standard learning. 

Section [LEARNING] contains the learning constants used by error-backpropagation (EBP) algo- 
rithm and some of its modifications. Four main methods of EBP learning are available in the pack- 
age: standard EBP, EBP with pruning, Lambda learning rule and Delta Bar Delta training. The last 
of the mentioned methods has its parameters stored in an additional section in the profile file ([DEL- 
TA BAR DELTA]). 

Standard EBP 

Standard error-backpropagation with momentum is the fundamental method for MFNN training. 
It is described in many sources, for example [1, 16]. We recommend learning constant equal to 0.1 
and momentum equal to 0.8. 
[LEARNING] 
constant=0.1 
momentum=0.8 
type=S standard 

EBP with pruning 

Two pruning methods are supported by the package: Structural Learning (SL) [4, 5,10], and Con- 
vergence Suppression and Divergence Facilitation (CSDF) [13, 14, 15,10]. To activate these meth- 
ods, change appropriate constants in the [LEARNING] section of the profile file to non-zero value. 
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Discussion how to set values of these constants is beyond the scope of this work and can be found 
in [7, 10]. The example values for CSDF are: 
[LEARNING] 
; Convergence Suppression and Divergence Facilitation defaults 
constant=0.1 
momentum=0.8 
suppression=0.9E-4 
facilitation=0.3 
decay=0.0 
decaysquare=0 . 0 
small-weight=0.001 
type=S standard 

and for SL: 

[LEARNING] 
; Structural Learning defaults 
constant=0.1 
momentum=0.8 
suppression=0.0 
facilitation^ . 0 
decay=1E-4 
decaysquare=0 .0 
small-weight=0.001 
type=S standard 

Lambda learning rule 
The lambda learning rule was developed to speed up learning by varying the gain of the neuron. 

Each neuron has its own gain. The method is described in detail in [17]. It should not be combined 
with the pruning methods. To activate this method, set the learning type in the profile file to L. 
[LEARNING] 
; Lambda Learning Rule 
constant=0.1 
momentum=0.8 
suppression=0 .0 
facilitation^ . 0 
decay=0.0 
decaysquare=0.0 
small-weight=0.001 
type=L Lambda learning 

Extended Delta Bar Delta learning 
In general, the EBP algorithm converges slowly. Delta Bar Delta learning is one of the algorithms 

where the goal is to speed up the standard EBP training by adapting the values of the learning 
constant and momentum. It is based on Jacob's algorithm introduced in [6]. The method is discussed 
in detail in [11]. 
[DBD LEARNING] 
con-vex=0.70 
min-eta=lE-6 
max-eta=0.50 
inc-eta=0.10 
dec-eta=0.90 
min-mom=0.0 0 
max-mom=0.80 
inc-mom=0.10 
dec-mom=0.90 

Convex constant in Delta Bar Delta training, (6=0.7) 
Minimum learning constant 
Maximum learning constant to prevent "wild jumps" 
Linear increase of learning constant,    (a^O.l) 
Geometric decrease of learning constant, (i|Jt)=0.9) 
Minimum momentum 
Maximum momentum to prevent "wild jumps,"(<1) 
Linear increase of momentum, (0^=0.1) 
Geometric decrease of momentum, (1^=0.9) 
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Allowing for large maximum learning constant can cause sudden "jumps" in the weight space and 
increase the training error. Therefore this training method is not recommended with the best general- 
ization training strategy, and the maximum learning constant should have reasonable value, e.g. 0.5. 
The minimum learning constant was introduced in this package as an additional feature. It may be 
useful in the case of data sets that are difficult to train. 

3.5.        Iterative inverse mapping 

The iterative mapping inversion of the model is controlled by parameters stored in section [IN- 
VERSION]. The iterative inversion algorithm is used to find NNM inputs which correspond to the 
desired model output. The search is similar to EBP with the difference that input vector is optimized 
in place of weights of the NNM which are kept constant. The algorithm is described with details in 
[2,8,9,10]. 
[INVERSION] 
constant=0.1 
end-error=lE-0 6 
end-derivative=lE-12 
end-iteration=100 0 

3.6.        Optimizing the design center 

Design centering algorithm used in this package is described in detail in [ 18, 19]. The initial center 
of the design is moved in the PCA-reduced space to optimize the process yield. That process is con- 
trolled by a few parameters. Usually there is no need to change the default conditions which are listed 
below: 
[OPTIMIZE CENTER] 
max-pts-iter=10 0 0 00 
max-bad-p t s=5 0 0 0 
min-bad-pts=10 0 
min-sigma=0.01 
inc-sigma=l.01 
max-sigma=l 
opt-constant=l.0 
opt-end-field=lE-07 
opt-iter-max=20000 
debug=0 

Maximum number of iterations during data collection 
Maximum number of "bad" points for centering 
Minimum numbers of "bad" points to run centering 
Initial variance (sigma) during centering 
Geometric increase factor for centering 
Final (maximum) variance during centering 
Center optimization constant 
Optimization termination condition 
Maximum number of iterations during centering 
debug=l allows creation of intermediate files *.dbg 

4. Example 

In order to illustrate the design centering procedure, a filter fabrication yield will be considered. 
Assume that a passive high-order band-pass filter is to be designed and then manufactured in a large 
series of circuits. The filter should have a center frequency equal to coo and a bandwidth of B^. 
Also, attenuation t, at the center frequency needs to be maintained. The filter is to be built from pas- 
sive RLC elements. Due to the spread in component parameter values, the filter specifications will 
differ from those desired but should remain within given tolerances ÖB3dB> &u>0 and 8^. Required 
nominal component parameters RLC can be easily calculated from the filter specifications by using 
appropriate equations. To meet the requirements, some of the components can be tuned using mea- 
surements taken at the circuit nodes. Since not every component of the filter is tunable, deviation 
of the RLC component parameters will result in some of the circuits in the series not meeting the 
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tolerance requirements and thus being rejected. The goal of the proposed design centering technique 
is to provide tuning criteria that will minimize the number of rejected circuits and hence maximize 
the fabrication yield. 

4.1.       Filter design 

Consider a fourth-order band pass filter shown in Fig. 3. The filter magnitude transfer function, 
M 

AAAr 

0 V; 
c, 

Fig. 3. The fourth-order band pass filter used in the design centering example, 

shown   in   Fig. 4,    depends    on   seven   RLC   parameters.    Center   angular   frequency 

4E+07        6E+07        8E+07        1E+08       1.2E+08 co 

Fig. 3. The transfer function of the fourth-order band pass filter from Fig. 2. 

coo=2jtl0.7MHz=67.23E+06, bandwidth B3dB=2jt2.3MHz=14.45E+06 and center attenuation co- 
efficient £=1 are the specifications that the transfer function should fulfill. Tolerances öfflo> 8ß3dB 
and Ö£ are criteria for an acceptance or rejection of a given circuit. RLC parameters are calculated 
from the filter specifications and used as nominal values for the circuit components. Mutually depen- 
dent parameters M, Li and L2 are used for tuning. Numeric values of the components are as follows: 
R1=R2=100Q, Li=L2=22.1mH, M=2.21mH, Ci=C2=lnF. 

After a filter circuit is assembled, it needs to be tuned using the following tune-up procedure: set 
Vj to IV amplitude and inspect voltage Vo at five frequencies 001 ...0)5. Tune the inductances until 
the voltages Vo(0)i)..Vo((05) are as close to the optimized input values of the design center as pos- 
sible. Section 4.2 demonstrates how to calculate the optimized design center using DESCENT soft- 
ware package. If the components used in the circuits were ideal, each assembled filter would precise- 
ly match the requirements, and hence implement the transfer function from Fig. 4. However, the 
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components parameters are distributed around their nominal values and after the tune-up is finished, 
the resulting coo, B3dB and t, are going to to be off the specs. If coo, B3dB and £ fail to fall into the 
tolerance range represented by 6, the circuit is rejected. 

4.2.       Filter modeling and design centering 

A set of 2000 circuits has been numerically simulated in order to develop the model of the process. 
The element values were distorted within 20% on nominal values using uniform distribution. Data 
were divided into two subsets of equal size: training data set and testing data set, and stored in the 
files mentioned in the first six rows in Table 2. 

TABLE 2. The list of input files for filter modeling and design centering. 

file name description in Section 3 

pa-lrn.dat values of elements (Ri, R.2, Li, L2, M, Ci, C2) 
for filters used for model training, 

not used in the process of design centering 

pa-tst.dat values of elements (Ri, R2, Li, L2, M, Ci, C2) 
for filters used for model training, 

not used in the process of design centering 

vo-lrn.dat measured voltages V0's for filters used for training xl.dat 

vo-tst.dat measured voltages V0's for filters used for testing xt.dat 

fr-lm.dat measured filter output parameters coo, B3dB and t, yl.dat 

fr-tst.dat measured filter output parameters coo, B3dB and t, yt.dat 

fr-targ.dat desired output parameters (specification and tolerances) target, dat 

vo-tol.dat standard deviations of input settings - 

TABLE 3. The list of files created during design centering. 

in-cent.out calculated input settings producing the output parameters 
closest to the specified in fr-targ.dat 

in-cent.out 

out-cent.out output parameters corresponding to the input setting from 
in-cent.out 

out-cent, out 

in-fit.out input settings optimized for maximum yield of the product in-fit.out 

out-fit.out output parameters corresponding to the settings from in-fit.out out-fit.out 

in-cent.dat input settings and their tolerances created from file in-cent.out 
by adding a vector of standard deviations vo-tol.dat 

center.dat 

in-fit.dat input settings and their tolerances created from file in-fit. out 
by adding a vector of standard deviations vo-tol.dat 

center.dat 

In addition to the files listed in Tables 2 and 3 process.ini, process.pca and process.net are used. 
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To prepare the configuration file, DES_CFG was executed by typing: 
des_cfg 

The program responded: 
des_cfg: Setup for Design Centering package 

Create new Environment for des-cent? (y/n) y 

Use PCA input dimension reduction (y/n) y 

Choose the training strategy: 
A - training for the best of all generalization 
B - training for the best generalization 
F - training for the best fitting of learning data 
P - training for the smallest error followed by pruning 
S - training for the smallest learning error 

Select now: (b/f/s) b 

Which learning method would you like to use: 
D - delta bar delta (requires more memory and is 

not recommended with best generalization strategy) 
P - error backpropagation with structural learning 
L - lambda learning rule 
Q - quickprop •(simplified version) 
S - standard error backpropagation with momentum (default) 

Select now: (d 1 p q s) s 
Configuration file "process.ini" has been created. 
To customize settings further, please edit that file. 

Then DES_PREP was executed by typing: 
des_prep vo-lrn.dat   fr-lrn.dat  vo-tst.dat   fr-tst.dat   5   5 

The program evaluated the PCA components for vo-lrn.dat and produced the following printout: 
The model  dimensionality  is:   5-5-5-3. 
Training  set has   1000   data   entries. 
Testing     set has   1000   data  entries. 
Constructing model   of   the  process   . . . 
Reading profile   ... 
Sorted  Principal   Components: 
L[l] = 2.6124 
L[2] = 2.16616 
L[3] = 0.171451 
L[4] = 0.038635 
L[5] = 0.0113584 

Preparing data . . . 
Normalizi ng . . 
Training 
Training for the smallest error 

At this moment the program was terminated by user (AC) and rerun with a different number of com- 
ponents used for internal NNM. Based on the calculated PCA eigenvalues (L[.]), only two reduced 
dimensions were selected with corresponding eigenvalues L[l] and L[2]. DES_PREP was executed 
once again with smaller PCA-reduced dimension specified by typing: 
des_prep vo-lrn.dat   fr-lrn.dat  vo-tst.dat   fr-tst.dat   2   5 
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The program evaluated the PCA components for vo-irn. dat, and then NNM training was started 
by typing: 

des_prep vo-lrn.dat fr-lrn.dat vo-tst.dat fr-tst.dat 2 5 

The program responded: 

The model dimensionality is: 5-2-5-3. 
Training set has 1000 data entries. 
Testing  set has 100-0 data entries. 
Constructing model of the process ... 
Reading profile . . . 
Sorted Principal Components: 
IMP[1] =       2.6124 
IMP[2] =       2.16616 
=== cut is set here === 
IMP[3] =       0.171451 
IMP[4] =       0.038635 
IMP[5] =       0.0113584 

Preparing data ... 
Normalizing .. . 
Training ... 
Training for the best generalization ... 
IT =      10 L-ERR = 0.108968 T-ERR = 0.112958 

After training, two new files are created: process.pca and process.net. They contain the complete 
description of the model. 

A new file fr-targ.dat (targetdat) with target output parameter values (coo, B3dB and £) with the 
following contents corresponding to the specifications (ÖB3dB> öwO and fy) from Section 3.1 needs 
to be created by user: 

67.23E+06 14.45E+06 1.0 
0.05 0.1 0.2 

Then the voltages V0(coi)..V0(co5) were calculated according to the design centering algorithm us- 
ing DES_CENT program. DES_CENT was executed by typing: 

des_cent   fr-targ.dat 

This produced: 

Retrieving model  of  the process  from process.pca and process.net   ... 
The model  dimensionality  is:   5-2-5-3,   PCA active 
Reading  specifications   from  fr-targ.dat   ... 

Design  specification   ... 
67.23e+06   14.45e+06   1 
0.05   0.1   0.2 

Inverse  mapping   . . . 
NOTE:   The best   local  minimum found 
IN:        0.224642   0.288539   0.314294   0.28986   0.230704 
OUT:      6.7197e+07   1.39769e+07   0.98046 

Design  centering   . . . 
Looking  for  initial  center   ... 
NOTE:   The best   local  minimum found 
Looking  around  the   initial  design  center   ... 
NOTE:   10000  bad data  collected 
Optimizing  the  design  center   ... 
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NOTE: Optimization force field is down to 9.99178e-08 in 4505 iterations 
IN:   0.230324 0.286644 0.304525 0.278411 0.221964 
OUT:  6.75473e+07 1.45612e+07 0.974033 

Done! 

The program calculated two centers: one corresponding to the specified desired (target) filter param- 
eters (in-cent.out), and the second one (in-fit. out) corresponding to the maximum yield of manufac- 
tured filters for the given specification - parameters and their tolerances (in-fit.out). The numbers 
in these files correspond to voltages V0(a)i)..V0(ü)5). Estimated output parameters for those specifi- 
cations were also stored in out-cent.out and out-fit.out. The numbers in these files correspond to 
wo, B3dB and t,. Note that your results for this example may differ slightly due to the selection of 
different random points used for center optimization. 
in-cent.out: 
0.224642 0.288539 0.314294 0.28986 0.230704 

out-cent, out: 

6.7197e+07 1.39769e+07 0.98046 

in-fit. out: 

0.230324 0.286644 0.304525 0.278411 0.221964 

out-fit. out: 

6.75473e+07 1.45612e+07 0.974033 

The performed optimization results of the design center can be tested and improvement evaluated 
using DES_TRY. For that purpose both files have to be supplied with the process parameter devi- 
ations. In the case of our example the voltages can be tuned only with the accuracy of 0.05V due 
to the small number of tunable elements.: 

0.05      0.05     0.05     0.05     0.05 

Adding these deviations to in-cent.out and in-fit.out yields two new files: 
in-cent.dat: 
0.224642 0.288539 0.314294 0.28986 0.230704 
0.05  0.05  0.05  0.05  0.05 

in-fit.dat: 

0.230324 0.286644 0.304525 0.278411 0.221964 
0.05  0.05  0.05  0.05  0.05 

The process yield can be estimated using developed model both for both centers by typing: 
des_try     in-cent.dat     fr-targ.dat     10000 

and 
des_try     in-fit.dat     fr-targ.dat     10000 

For the given design centers and the model the results were following: 
For the first center the program responded with: 
Retrieving model of the process . . . 
The model dimensionality is: 5-2-5-3, PCA active 
Reading design center and absolute tolerance from in-cent.dat ... 
Reading specifications from fr-targ.dat ... 
Calculating 10000 sample cases .. . 
IN-TOL #1 OUT-TOL #1 PREDICTED YIELD IS 5319 out of 10000 

Done! 
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For the latter center the program responded with: 

Retrieving model of the process ... 
The model dimensionality is: 5-2-5-3, PCA active 
Reading design center and absolute tolerance from in-fit.dat ... 
Reading specifications from fr-targ.dat .. . 
Calculating 10000 sample cases ... 
IN-TOL #1 OUT-TOL #1 PREDICTED YIELD IS  5880 out of 10000 

Done ! 

Now the decision can be made about the voltage values for filter tuning. Moving the process center 
from the initial value (in-cent.out) to the optimized design center (in-fit.out) would increase the fil- 
ter manufacturing yield by about 5.5% with no additional changes in the manufacturing process. 
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Abstract 

Multilayer feedforward networks are often used for modeling complex functional relationships 
between data sets. Should a measurable redundancy in training data exist, deleting unimportant 
data components in the training sets could lead to smallest networks due to reduced-size data 
vectors. This reduction can be achieved by analyzing the total disturbance of network outputs due 
to perturbed inputs. The search for redundant input data components proposed in the paper is 
based on the concept of sensitivity in linearized models. The mappings considered are R'-* U.K 

with continuous and differentiable outputs. Criteria and algorithm for inputs' pruning are 
formulated and illustrated with examples. 

Keywords: Perceptron networks; Sensitivity to inputs; Input layer pruning; Feature elimination; Saliency 
measures; Continuous mapping 

1. Introduction 

Neural networks are often used to model complex functional relationships between 
sets of experimental data. Such a modeling approach proves useful when analytical 
models of processes do not exist or are not known, but when sufficient data is available 
for embedding existing relationships into neural network structures. Multilayer feedfor- 
ward neural networks (MFNN) consisting of continuous neurons have been found 
particularly useful for such model building [1-3]. Representative training data are used 
in such cases for supervised training of a suitable user-selected MFNN architecture. 
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Minimization of potential redundancy in data used for supervised training can take 
different forms [4]. Duplicative data pairs are essentially removable from the training 
sets without a loss of accuracy. In' contrast, special attention should be paid to data that 
carry conflicting information. Such data do not normally allow for unique mapping and 
should be eliminated. Our concern in this paper is to explore potential redundancy in 
input vector dimensionality. As such, this concern has only little in common with the 
widely used notion of network pruning. By deleting superfluous inputs, if such inputs 
exist, the number of input nodes is reduced. The resulting network is still pruned as it 
contains no weights fanning out of deleted inputs. 

A popular objective of network pruning is to detect irrelevant weights and neurons. 
This can be achieved through evaluation of sensitivities of the error function to the 
weights which are the learning parameters [5,6]. Errors other than quadratic are often 
used to achieve identification of insensitive weights. Statistical moments of neural 
networks-built mappings, including sensitivities to inputs, are discussed in [7]. Our focus 
in the paper is mainly to develop clear and practical measures of sensitivities to inputs 
rather than to weights or neurons. Then, a systematic algorithmic approach has been 
developed to utilize these measures towards deletion of redundant inputs. 

To determine which inputs are necessary for the satisfactory neural network perfor- 
mance a metric known as saliency was introduced in [8]. Belue and Bauer developed an 
algorithm extending the saliency metric over the entire input space [9]. The approach 
involves multiple neural network training and superposition of noise on the training 
patterns to reduce the dependence of results on local minima. This method, however, is 
computationally intensive due to the required multiple training sessions and exhaustive 
coverage of the input space. 

The saliency method was developed to determine the irrelevant features for neural 
network classifiers [9]. The sensitivities of MFNN outputs with respect to inputs are 
calculated and used along with various metrics to evaluate importance of features. Such 
classifier networks in general are characterized by small sensitivities when fully trained. 
Therefore, saliency can be applied only with the addition of noise to the training patterns 
and with sampling of the input space over the whole domain. Multiple training is 
necessary to average the results and prevent dependence on local minima achieved 
during training. 

This paper focuses on the concept of sensitivity, or perturbation method, for pruning 
unimportant inputs for neural networks providing continuous mapping. This assumption 
and the proposed new sensitivity summation metrics allow application of the method 
directly to trained MFNNs without adding noise to the training patterns or multiple 
trainings. In fact, in case of continuous mapping the problem of local minima reached 
during training is not important if sufficient approximation accuracy is achieved. As a 
result the presence of local minima does not affect the Jacobian matrix used by this 
method. The Jacobian matrix is derived from the approximate neural network mapping 
over the training data set. This eliminates the need for computationally intensive 
repetitive training. In addition to mappings with continuous outputs the sensitivity 
method can be applied to the classification problems. However, in such cases an 
additional neural network has to be trained as described in one of the examples. 

Let us consider an MFNN with a single hidden layer. The network is assumed to 
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perform a nonlinear, differentiable mapping rrR'^R*, o = r(x), where o (KX 1), 
and x (/Xl) are output and input vectors, respectively. In further discussion it is 
assumed that certain inputs bear none, or little statistical or deterministic relationships to 
output vectors, and are therefore removable. The objective here is to reduce the original 
dimensionality of the input vector, x, so that a smaller network can be used as a model 
without loss of accuracy. Initial considerations published in [10-12] are extended below 
along with a formal framework for the perturbation approach as applied to the neural 
network models. 

Let o: IR' -* RK with component functions ot,p2, ■ ■ ■ ,oK. Suppose x(n) e (I, where 
fl is an open set. Since o is differentiable at x(n) we have 

o(x + Ax) = o(x(n)) + 3(x(n)) Ax + g( Ax), (1) 

where 

J(x<">) <">"\ = 

do, 

17, 

do* 

dx, 

do, 

dx2 

do2 

dx-, 

do* 

do, 

17, 
do2 

17, 

dx, 

is the Jacobian matrix and 

g(Ax) 
lim^-f = 0. (2) 

Fig. 1 provides geometrical interpretation of relationship (1) in space RK. Point 
oCx^) represents the nominal response of the MFNN for the n-th element of the 
training set, x<n). The disturbance Ax of the input vector causes the perturbed response 
at o(x(n) + Ax). This response can be expressed as a combination of three vectors as 
indicated in Eq. (1). 

o<n>=o(x<n)) 

J(x<n>)Ax 

g(Ax)   02 

o(x<°)+Ax) 

Fig. 1. Geometrical interpretation of output disturbance due to the input disturbance Ax. 
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Assuming now that the network with input x is perturbed by applying Ax -* 0, then 
the only relevant component in Eq. (l) becomes J(x(n))Ax due to the fact that the first 
term of Eq. (1) is fixed, and the third one vanishes accordingly to Eq. (2). This 
corresponds to the shaded triangle vanishing due to the vanishing g(Ax) side, but also 
due to the vanishing multiplier Ax of the Jacobian matrix. Still, matrix J(x(n)) provides 
the crucial first-order directional information about the non-zero displacement o(x(n) + 
Ax) - o(x(n)). 

The proposed input perturbation approach has proven rather useful for function 
approximation cases studied in context of input pruning. However, in case of pattern 
classifiers output neurons are near saturation and the method needs to be modified as 
discussed in one of the later sections. 

2. Statement of the problem 

Our purpose is to evaluate the displacements due to the perturbed inputs over the 
entire training set ^= {x(1),x(2),... .x^}. For an example of several training vectors 
ySn)^.3f disturbed by vector Ax each output relationship is depicted in Fig. 2(a). 
Depicted displacements are for identical and small values of Ax for f= 1,2,...,// 
(N= 18 in this example). — 

These changes can be projected back to the input space R'. The question is whether 
or not all / dimensions of input vectors are relevant for having caused the displacements 

a) 

•■(tSS&JxÄ&SSBSSSfr 

oOT(x<N)+Ax) 

b) 

Fig. 2. Perturbation impact in (a) output space, and (b) input space when all output changes are constant in x2. 
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of outputs. Fig. 2(b) illustrates an example of respective input changes which are 
causing output perturbations of Fig. 2(a). It can be seen that the variable x2 does not 
participate in output changes, ow(x(,) + Ax), or each of the K output functions 
measured on the training set Sf is constant in x2. 

In general, should all outputs be insensitive to the i-th variable, then the entire i-th 
column of the Jacobian matrix would vanish. Note that the vanishing column property 
would have to hold for the entire training set Sf, thus zeroing the i-th column for 
J(x(n)), n = 1,2,...,N. In real life situations, however, qualitative measures other than 
zero need to be developed to compare the relative significance of each particular input 
over the training set. Following sections of the paper are aimed at formulating such 
measures and the related input variable pruning algorithm. 

«iSSSSisSi^&fcSSii 

3. Sensitivity matrix 

It can be easily noticed that the entries of the Jacobian matrix defined in Eq. (1) can 
be considered as sensitivity coefficients. Specially, sensitivity of an output ok with 
respect to its input x-t is 

dot 

S? = — (3) 

which can be written succinctly as 

By using the standard notation of an error backpropagation approach [3], the derivative 
of Eq. (3) can be readily expressed in terms of network weights as follows: 

*ok     /-«     dyj 
—- = okLwkj—, 
dx dx: 

(4) 

where y denotes the output of the j-th neuron of the hidden layer, and o'k is the value 
of derivative of the activation function o =f(net) taken at the £-th output neuron. This 
further yields 

dok        '-• 

dx, 
= o\Lwkjy'jvji> (5) 

;-i 

where yj is the value of derivative of the activation function y =f{net) of the j-th 
hidden neuron (y'j — O since the 7-th neuron is a dummy one, i.e. it serves as a bias 
input to the output layer). The sensitivity matrix S ( K X /) consisting of entries as in Eq. 
(5) or Eq. (3) can now be expressed using array notation as 

S = O' X W X Y' X V, (6) 

where W (KXJ) and V (JXI) are output and hidden layer weight matrices, 
respectively, and O' (KX K) and Y' (7X7) are diagonal matrices defined as follows 

O' = diag(o\,o'2,...,o'k), 

Y'= «fias(y,,/2. ••../,)• 
(7) 
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Matrix S contains entries Ski which are ratios of absolute increments of output k due 
to the input / as defined in Eq. (3). This matrix depends only upon the network weights 
as well as slopes of the activation functions of all neurons. Each training vector x(n) G.3? 
produces different sensitivity matrix S(n) even for a fixed network. This is due to the fact 
that although weights of a trained network remain constant, the activation values of 
neurons change across the set of training vectors x(n), n = 1,2,...,N. This, in turn, 
produces different diagonal matrices of derivatives O' and Y', which strongly depend 
upon the neurons' operating points determined by their activation values. These matrices 
contain linearized activation functions at their quiescent points. 

4. Measures of sensitivity to inputs over training set 

In order to evaluate the option of dimensionality reduction of input vectors, the 
sensitivity matrix as in Eq. (6) needs to be evaluated over the entire training set Sf. Let 
us define the sensitivity matrix for the pattern xn as S(n). There are several ways to 
define the overall sensitivity matrix, each relating to the different objective function 
which needs to be minimized. 

The mean square average (MSA) sensitivities, Ski3vg, over the set 3? can be 
computed as 

Ski„ * 1/ s=L
Tt • («) 

Matrix Savg ( K X /) is defined as [Savg] = Ski avg. This method of sensitivity averaging is 
coherent with the goal of network training which minimizes the mean square error over 
all outputs and all patterns in the training set. 

The absolute value average sensitivities, Skiibs, over the set 2? can be computed as 

(9) 

Matrix Sabs (K X /) is defined as [SabJ = SkiAbs. Note that summing sensitivities across 
the training set requires taking their absolute values due to the possibility of cancelations 
of their taking negative and positive values. This method of averaging may be more 
advantageous than Eq. (8) when sensitivities Sff, n = 1,... ,N, are of disparate values. 

The maximum sensitivities, Ski max, over the set 8? can be computed as 

SkLaax±   max   {S<?>}. (10) 
n— 1 ... N 

Matrix Smax (KX I) is defined as [SmaJ = Skjmix. This sensitivity definition allows to 
prevent pruning inputs which are rather relevant for the network, but relevance occurs 
only in a small percentage of input vectors of the whole training set. Infrequent but 
relevant relationships in the training set are masked due to the averaging in Eq. (8) and 
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Eq. (9), but remain distinguishable for the measure (10). The drawback of this measure 
is that the significance of inputs can be overestimated and some unimportant inputs may 
remain after shrinking the input vector. 

Any of the sensitivity measure matrices proposed in Eqs. (8)—(10) can provide useful 
information as to the relative significance of each of the inputs in Sf to each of the 
outputs. For the sake of brevity, however, mainly the MSA sensitivity matrix defined in 
Eq. (8) will be used in further discussion but other sensitivity measures will be used for 
comparison purposes. The cumulative statistical information resulting from Eq. (8) will 
be used along with criteria for reducing the number of inputs to the smallest number of 
them sufficient for accurate learning. These criteria are formulated in the next section. 

Other useful measure of sensitivity used for the evaluation of input saliency was 
introduced in [9]. Instead of summarizing Ski over the data set as in Eq. (9), the set of 
points %? created by uniform sampling of the input space ScR' is used 

9      = °it.sal (H) 

where N? is the number of samples in %?. The saliency measure [SsaI] = Skl[<sai allows 
for better estimation of the sensitivity over the entire input space. However, in highly 
dimensional space, and when & does not have the shape of hypercube, the summation 
(l l) may be difficult to perform due to the problems with generating the set 3?. It would 
be computationally intensive to sample uniformly high-dimensional hypercube. Further- 
more, training patterns in 2! may not cover the domain uniformly and/or some of the 
samples generated may not represent the desired properties of the network. Our 
proposed measures do not suffer from these potential limitations. 

*i^&&S!iSSStÄä" 

5. Criteria for pruning inputs 

Inspection of the MSA sensitivity matrix Savg allows to determine which inputs affect 
outputs least. A small value of Skiavg in comparison to others means that for the 
particular k-lh output of the network, the i-th input does not significantly contribute per 
average to output k, and therefore could be possibly disregarded. This reasoning and 
results of experiments allow to formulate the following practical rule: The sensitivity 
matrices for a trained neural network can be evaluated for both training and testing 
data sets; the norms of MSA sensitivity matrix columns can be used for ranking inputs 
according to their significance and for reducing the size of network accordingly through 
pruning less relevant inputs. 

When one or more of the inputs have relatively small sensitivity in comparison to 
others, the dimension of neural network can be reduced by removing them, and a 
smaller-size neural network can be successfully retrained in most cases. The criterion 
used in this paper for an algorithm determining which inputs can be removed is based on 
the so called largest gap method. 

Suppose two inputs are providing important data for a neural network. One of them 
has much larger relative change than the other one. In such case the sensitivity of the 
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second output would be much larger than the first one due to the necessity of an 
additional amplification of the input by network weights. In the extreme the first of 
those two inputs may even be selected for pruning. To prevent such cases additional 
scaling of matrices defined in Eqs. (8)—(10) is necessary or additional data preprocessing 
is another solution. In fact the latter seems to be better due to the fact that it prevents 
hidden layer neuron saturation at the beginning of the training when all their weights 
remain random, and therefore speed up the training. Formulas proposed in Eq. (12) 
allow to scale inputs into the range of [— l;l]. They were used in examples presented in 
this paper. 

x{->-((  max   {*<">}+   min   fx}->})/2) 

X''    ~ I  max  {*,<">}-   min   {*,<">}) 
\n-l...N n-l...Wl 'l 

<->-((  max ><»>}+   minm)/2) 
 V >■« — 1... N n — 1 ... N '       I 

(  max ><">}-   min   M">}) 

(12) 

<5<m) = 

where A denotes the normalized variable, or parameter. 
Experiments were performed also for scaling inputs into range [0;l]. Similar results 

were achieved for the same learning conditions. The first scaling seems to accelerate 
slightly the convergence while accuracy and relations among sensitivities remain 
unchanged. If input and output data scaling (12) has been performed before network 
training, no additional operations on Ski is required and we have 

St-     =5t-     . (13) 

Note that scaling can be performed either on entries of S or Savg. 
In case when network original inputs and outputs are not scaled to the same level as 

in Eq. (12), additional scaling (14) is necessary to allow for accurate comparison among 
inputs. 

^i/.avg — ^ii 

f   max   {^n)}-    min   {xjn)}) 
(14) 

\/i— l...Af II—1...JV ' 

The significance measure of i-th input, 4>,, across the entire set 8? is now defined as: 

*'-**4_Tü ,{*«■"»}• /==1'-'/_L (15) 

Obviously, 4>abs and #max can be evaluated similarly to <2>avg defined in Eq. (15) if 
other sensitivity measures are used. Note that searching for entries <Pt, i= 1,2,...,/ - 1, 
as in Eq. (15) corresponds to finding norms of column vectors of the normalized MSA 
sensitivity matrix Savg. This can be denoted as 

||S,.|U=   max  \Ski,3J,    «=1,2,..,/-1. (16) 
Jt-i. 
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In order to distinguish inputs with relative high and low importance and rank them 
properly, entries of <Pt have to be sorted in descending order so that: 

*.■„,**.■-•    «-!.-./-2 (17) 

where {im} is a sequence of sorted inputs. Note that the sensitivity measures Sti and 
respective input significance measures, <£>,, are abstract quantities. Practical heuristic 
algorithms need now be outlined based on which subsequent input pruning decisions can 
be made. One of such algorithms is outlined below based on the ratios of two 
neighboring terms of the sequence $, . 

Let us define the measure of gap as Eq. (18) 

6m <Z> 

and then find the largest gap using the formula (19). 

Smax - max( gm) and mcat = m such that gm = gm3X. 

(18) 

(19) 

Determining the largest gap, however, does not imply, that all inputs with coefficients 
lower than <Pm | can be pruned. Whether or not inputs selected for pruning are actually 
contributing much to the neural network performance an additional criterion is neces- 
sary. An example of such criterion is given by Eq. (20) stating that second largest gap, 
gmax „, has to be much smaller than that given by the formula (19). If condition (20) is 
valid, then the gap found between mcul and mcut + 1 is large enough. 

Qm« > *m»II. where SmaxlT 

cut 

(20) 

Constant C from Eq. (20) is chosen arbitrarily within the reasonable range (e.g. 
C = 0.5. The smaller C, the stronger is the condition for existence of the acceptable 
gap). All inputs with index {/„+,.../,_,} can be pruned with the smallest loss of 
information to the MFNN. 

The gap method can be also applied for comparison among sensitivities of inputs to 
each output separately. For this purpose, a set containing candidates for pruning can be 
created for every output. Final pruning is performed by removing these inputs which can 
be found in every set determined previously for each output independently. 

Obviously, Savg can be meaningfully evaluated only for well trained neural networks. 
Despite this disadvantage, proposed criteria can still save computational effort when 
initial training is performed on smaller, but still representative subset of data. S can 
then be evaluated based either on the data set used for initial training or on complete 
data set. Subsequently, newly developed neural networks with appropriate inputs can be 
retrained using the full set of training patterns with reduced dimension. 

The importance of input / can be also determined statistically. The input saliency 
method referred to earlier [9] uses formula (21) and the averaging of the results over 
multiple training sessions. 

<t>, 
K 

■L\skl sail 1=  I,...,/-  1. (21) 
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The measure &isi{ is called input saliency. The z'-th input is considered to be salient if 
the average saliency calculated over many training sessions is above the upper confi- 
dence boundary as described in more detail in [9]. Such statistical approach, although 
computationally intensive in comparison with proposed heuristic solution (19) allows for 
formulation of the theoretical criterion for unimportant feature removal. 

6. Numerical examples 

>80§iJS!^5KKJi3§fej>»-t 

A series of numerical simulations was performed in order to verify the proposed 
perturbation-based approach and the pruning criteria. In the first experiment a training 
set for a neural network was produced using four inputs x1...x4 and two outputs o, 
and o2. Values of output o, were correlated with x1 and x2, and of output o2 with x2 

and xy Input vectors x (4 X 1) were produced using a random number generator. The 
expected values of vector d (2 X 1) for the output vector o (2 X 1) were evaluated for 
each x using a known relationship d = F(x) where d is the desired (target) output vector 
for supervised training. The training set 3? consisted of N=81 patterns. A neural 
network with 4 inputs, 2 outputs and 6 hidden neurons (/ = 5, 7 = 7, K - 2) has been 
trained for the mean square error defined as in Eq. (22) 

N    K 

EL(4n)-4n)) 
MSE = n-Ii-l 

N   (22) 

equal to 0.001 per input vector. Matrices of sensitivities were subsequently evaluated 
and Savg produced at the end of training over the entire input data set 2?. 

The changes of MSA sensitivity entries during learning are presented in Fig. 3. It can 
be seen that initial sensitivities are low and apparently random positive numbers. During 
the training some of the average sensitivities SkiiVg increase, while others converge 
towards low values. An obvious property can be seen that an untrained neural network 
in the example has per average smaller sensitivities than after the training. Final values 
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Fig. 3. Sensitivity profile during training for the full training set 
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Fig. 4. Learning profile for full and pruned training sets. 
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of sensitivities of the first output offer hints for deleting x3 and x4, and these for the 
second output indicate that x, and xA could be deleted. The only input which then 
shows up in both sensitivity sets candidates for deletion is xA. Therefore, the fourth 
input to the network can be eliminated and its dimension reduced to 3 inputs plus bias 
(1 = 4). 

The new. network with three inputs was trained successfully after deleting x4 from 
the training data set with the same accuracy. The learning profiles for full and reduced 
input sets for the same learning conditions are compared in Fig. 4. Not only the network 
with three inputs trains within a smaller number of cycles, but each learning cycle is 
performed faster due to the reduced input layer size. 

If an input not recommended for pruning is erroneously deleted, the network is not 
able to learn the data sets. In our example the MSE value remains at the level of 
approximately 0.24 as it is shown in Fig. 4. Most entries of the sensitivity matrix remain 
low as shown in Fig. 5, which is indicative of poor network performance. A network 
erroneously trimmed is not able to learn accurately because some important relationships 
have been lost after pruning. 

4000 5000 
Training Cycles 

Fig. 5. Sensitivity profile during training for incorrectly trimmed training set. 
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Fig. 6. Input significance <f> evaluated using different overall sensitivities (8)-(10) and pruning criterion (20). 
(RND is a random function in [—1;1].) 

The second experiment was performed using a larger network and random data. 
MFNN had 20 inputs (7 = 21), 10 hidden neurons (7= 11) and 4 outputs (K=4). 
There were N = 500 patterns in the training set. Several additional data sets of the same 
size have been generated according to the same rule as the training set for performance 
evaluation. The network was successfully trained to the MSE of 0.15. However, due to 
the randomness of the data, MSE for additional sets remained at the level of 0.2Ö. All 
outputs were strongly correlated with inputs xx, x2, x3, xA, x6, xs, and x9. Input x6 

during data generation was multiplied by random number, while the influence of x2 and 
x4 on outputs can be seen as scaled down in comparison to other inputs. 

:.^^^i>*S^*'>i&3&><KJC 

Table 1 
Intermediate results of the pruning algorithm (refer to Fig. 6, Fig. 7 and Fi«. 9) 

UJ "kv-.i»! Sim {'„,} "Pabs.im oim {<■„,} Tniax.iw Sim {'„,) *rcor.im Sim 

1 0.314 1.047 1 0.175 1.071 1 0.679 1.015 1 0.998 1.006 
J 0.299 1.227 3 0.164 1.223 3 0.669 1.146 3 0.992 1.153 
8 0.244 1.371 8 0.134 1.329 8 0.584 1.181 8 0.861 1.310 
6 0.194 1.497 6 0.101 1.218 6 0.494 1.454 6 0.657 1.333 
9 0.129 3.013 9 0.082 2.979 9 0.340 1.402 9 0.493 1.681 

20 0.043 1.132 20 0.027 1.118 20 0.242 1.030 4 0.293 1.081 
18 0.038 1.034 4 0.024 1.040 5 0.235 1.061 7 0.271 1.207 
5 0.036 1.023 2 0.023 1.029 12 0.222 1.284 2 0.224 1.476 
4 0.036 1.037 5 0.023 1.029 11 0.172 1.026 14 0.152 1.027 

10 0.034 1.001 10 0.022 1.100 15 0.168 1.030 12 0.148 1.088 
12 0.034 I.I 10 18 0.020 1.10 4 0.163 1.000 11 0.136 1.038 
2 0.031 1.022 12 0.018 1.130 10 0.163 1.105 15 0.131 1.147 

15 0.030 1.134 15 0.016 1.007 14 0.148 1.018 5 0.114 1.225 
19 0.026 1.106 19 0.016 1.02 18 0.145 1.029 16 0.093 1.024 
IJ 0.024 1.025 17 0.015 1.034 2 0.41 1.013 13 0.091 1.108 
W 0.023 1.054 16 0.015 1.121 13 0.129 1.447 18 0.082 1.027 
16 0.022 1.005 11 0.013 1.003 19 0.096 1.046 17 0.080 1.236 
11 0.022 1.121 13 0.013 1.167 7 0.9092 1.078 10 0.064 1.186 
14 0.020 1.108 7 0.011 1.034 16 0.085 1,137 19 0.054 1.147 
7 0.018 - 14 0.011 - 17 0.075 - 20 0.047 - 

mcut = = 5 mcui = = 5 ""cul" = none "ICUI= = none 

Kmax = 3.013 a m = 5 = 2.979 a m = 5 = 1.454 at m = 4 g = 1.681 a m = 5 
omax , = 1.497 at m = 4 ,= 1.329 at m = 4 .= 1.447 at m= 16 g , = 1.476 at m = 8 
£fiux l/Smix — 0.497 < C omax I A'max ~" 0.446 <C omax ,/gm = 0.995 > C #max l/omax 0.878 > C 
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Fig. 7. Input significance <f>2y. changes during training for the full training set. 
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The input significance measures calculated using formulas (8)-(l0) are shown in Fig. 
6. After sorting inputs x2 and x4 are ranked as even less important than other inputs 
which are not correlated at all. This occurred because of their low correlation with 
outputs, and they can be ignored as well as other inputs which show as uncorrelated for 
given MSE value as a final condition for training. The sequence of significance 
measures <Pmg, 3>abS> and <£„,„, are the same for all proposed coefficients, however, the 
size of gaps are different in each case. 

Table 1 summarizes numerical results. It lists the sequence {/m} and values gim. Note 
that mcut = 5 and gmax = 3.013. C was selected arbitrarily as 0.5. Note that value 
C = 0.5 would prevent pruning using ^mx definition. Also note that the maximum 
method does not provide a clear clue where to locate the gap for purging due to 
fuzziness of the training data. 

The result of initial training is shown in Fig. 7. It can be determined from this figure 
which inputs should remain active after pruning. The network performance after pruning 
is shown in Fig. 8. No additional dimension reduction is advisable because no large gap 
in input importance is found. The speed of training has increased mostly because of the 

MSE   .. 

<t>i 

<J>8 
4>6 

(j). 

150 200 250 300 
Training Cycles 

Fig. 8. Input significance <£;,„„ changes during training for the pruned training set. 
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Fig. 9. Normalized input significance coefficients 4> for different sensitivities (8)-( 10) and pruning criterion 
(20) in comparison to significance coefficients evaluated using standard correlation method <t>mt. Significance 
coefficients are normalized. (RND is a random function with uniform distribution in [—1;1].) 
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reduction of the MFNN size (input dimension reduced to 25%). The necessary number 
cf training cycles has also decreased, but not so dramatically as in the first experiment. 

An alternative approach to the presented perturbation based method is offered 
through correlation computation. Input significance coefficients <£lcor, can be computed 
from the definition (24) based on sensitivity matrix entries given by Eq. (23). 

N 

EW'-W-i,) 
C ^  '1 
°ii,cor N 

71-1 

EK^EW'-s,) 
n-\ 

N 

£ 
/l-I 

k" I ... K 

(23) 

(24) 

Note that this approach requires additional computational effort and it makes use of 
data only. This is in contrast to the proposed method of calculation of sensitivities and 
input significance coefficients which requires rather the use of the network model and 
partially data as well (input vectors only). Fig. 9 illustrates that both methods compare 
consistently with each other and yield comparable results. 

Another experiment was performed using the IRIS data set. That set was first 
published by Fisher [13] and has been used widely as a testbed for statistical analysis 
techniques. The sepal length, sepal width, petal length, and petal width were measured 
on 50 iris specimens from each of 3 species, Iris setosa, Iris versicolor, and Iris 
virginica. The data set was divided randomly into a training data set containing 100 
entries, and a testing data set containing the remaining 50 entries. 

As mentioned, the proposed sensitivity method does not apply directly to neural 
network classifiers, but can still offer guidelines as to the ranked importance of inputs. 
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a) 

b) 

12 34 

Inputs Remaining 

c) 
4  i 

Fig. 10. Neural network training using IRIS data set and termination conditions set by MSE: (a) percentage of 
misclassification for training and testing data sets, MSE = 0.05; (b) coefficients 4>t for the complete training 
data set, MSE = 0.01; (c) gap sizes for sorted input significance coefficients (b), MSE = 0.01; (d) coefficients 
<P'\ after removing input No. 1, MSE = 0.05. 
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Classifier in this example was trained for desired output values of —0.5 and 0.5. 
Although placing neuron outputs outside of the saturation region deteriorates the 
classifier's performance, it allows to use sensitivity method for input pruning. 

Fig. 10 summarizes the result of computational experiment. As can be seen from Fig. 
10(a), pruning a single input, No. 1, causes the increase of error to 10%, while removing 
inputs No. 3 and No. 4 leads to error of 18 and 30%, respectively. In addition, removing 
input No. 2 makes it impossible to train the classifier. The pruning algorithm results in 
significance coefficients as in Fig. 10(b), and the gap sizes as in Fig. 10(c). After sorting 
coefficients <Pt into <Pim and evaluating gap sizes gmmcut was set to 3 according to the 
formula (19). Input number i4 = 1 can be pruned because condition (20) is satisfied. 
Correlation analysis performed on IRIS data has not lead to a clear indication of which 
inputs can be pruned (see Fig. 11). 

4>L 

a) 

Fig. 11. Correlation between inputs and outputs for IRIS training data set: (a) input significance coefficients 
for the complete training data set; (b) gap values for sorted inputs (a). 
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7. Conclusions 

Using the perturbation-based sensitivity approach for input layer pruning seems 
particularly useful when network training involves a large amount of redundant, data. In 
the first phase, a network can be pre-trained until the training error has decreased 
satisfactorily. Then, sensitivity matrices can be evaluated and dimension of the input 
layer possibly reduced. Training can subsequently be resumed until the training error 
reduces to an acceptable value. This process can be repeated, however, usually only the 
first execution yields significant improvement. Numerical experiments indicate that an 
effort of further network retraining beyond the first pass can be too high in comparison 
to benefits of further minimization. 

Should the redundancy in training data vectors exist, the proposed approach based on 
the average sensitivity matrices for input data pruning allows for building more efficient 
perceptron network models. This can be achieved at a relatively low computational cost 
and based on heuristic pruning criteria outlined in the paper. The approach proposed 
here is somewhat similar to the principal component analysis in the sense that it detects 
directions of basis vectors and their relative importance. In contrast to the eigenanalysis 
for the largest eigenvectors, basis vectors here are fixed. They correspond to the basis 
vectors in which the original training data are formulated. As such, the approach is 
aimed at identifying basis vectors yielding minimal projections in the fixed input space 
dimensions. 

The applicability and significance of the presented method is mostly for continuous 
and differentiable mappings. The method would be even more useful if it allowed 
additionally merging inputs which are totally correlated on an input set while yielding 
same target responses. In addition, further extension of the proposed sensitivity-based 
input pruning approach for binary output networks such as classifiers and binary 

iäSSöjgssifeiii^isi?- encoders would be desirable. 
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Abstract 

In this paper we present a methodology for solving inverse mapping of continuous functions modeled 
by multilayer feedforward neural networks. The methodology is based on an iterative update of the 
input vector towards a solution, which escapes local minima of the error function. The update rule is 
able to detect local minima through a phenomenon called "update explosion." The input vector is then 
relocated to a new position based on a probability density function (PDF) constructed over the input 
vector space. The PDF. is built using local minima detected during the past search history. Simulation 
results demonstrate the effectiveness of the proposed method in solving the inverse mapping problem for 
a number of cases. 

1. introduction 

It is known that multilayer feedforward neural networks can be trained to approximate continuous func- 
tions with a high degree of accuracy [1]. In many engineering applications, optimization problems need 
to be solved that require inverse solutions for nonlinear systems. Also, inverse mapping has important 
implications in cognitive and mental processes. 

The inverse mapping considered here aims at relating an Jlfrdimensional output space to an N- 
dimensiohal input space. The problem of inverse mapping can be stated as Mows: Given the desired 
output vector y , generate an input vector x that satisfies the forward mapping y(x) = y*. Note that 
in general, more than one solution can exist. ' 

For special cases of nonlinear functions where a convex error function can be defined over the input 
space, we can use iterative approaches such as the steepest descent method, Newton's method, the 
conjugate gradient method, etc. [3]. In cases when a convex error function can not be generated, 
stochastic optimization such as simulated annealing [4-6], or an efficient global search such as sub-energy 
tunneling and terminal repelling [7] can be used. 

In this paper we propose a new approach for obtaining inverse mapping of a continuous function 
based on an iterative update of the input vector, while escaping from local minima. The update rule is 
determined by the pseudo-inverse of the gradient of the Lyapunov function. The update rule is able to 
detect local minima by generating an explosive amount of update at a local minimum, called «update 
explosion." The input vector is then relocated to a new position based on a probability density function 
(PDF) constructed over the input vector space. The PDF is built gradually using the local minima 
detected during the search process which helps in relocating the trajectory to a point that is close to the 
global minimum. 
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2. Input vector update 

The input vector update rule can be formulated based on Lyapunov function of the considered system. 
The rule provides fast convergence to a global minimum while detecting local minima. 

Assume x to be an N-dimensional input vector defined over the compact set /, where / = [— a,a]N £ 
RN, while y(x) represents the mapping learned by the neural network model, and y is the actual M- 
dimensional output vector corresponding to the input vector x. Next, select the Lyapunov function V as 
follows: 

v = |l|y(x)||2, (i) 

where y(x) is an M-dimensional output error vector defined as y(x) = yd - y(x). 
From (1), the time derivative of Lyapunov function can be expressed as follows: 

-©^t--*'- (2) 
where J represents the Jacobian matrix. 

To form the input vector update rule, consider the following system [8]: 

V     dV _ 1  |ly||2     t v-,0 (z) x—Jwf^-2WWJy'    Vy*0' () 

The above system has such a property that x in (3) keeps V in (2) negative throughout the convergence, 
as V = -V . Furthermore, when x approaches a local minimum of V(x), i.e., dV/dx = 0 but V(x) ^ 0, x 
takes an excessive value. On the other hand, when x approaches a global minimum, i.e., dV/dx = 0 and 
V(x) = 0, x converges to zero. Also note that, in (3), (l/||öV/öx||2)(dVyöx) represents a pseudo-inverse 
[2] of (dV/dxy. 

In the following, a novel update rule that assures convergence of the trajectory to local minima is 
proposed. The convergence to local minima achieved here is sufficient for detecting them. The update 
rule is expressed as follows: 

6x< = n'x1' (4) 

where subscript i represents the update step, 17' is the update coefficient initiated at n° = 1, and x' is 
given by equation (3). The convergence is accomplished by adaptively modifying the update coefficient 
T) at each update step based on observing the trajectory. More precisely, t) is decreased whenever the 
update step is too large to reach a local rninimum. Update steps are considered to be too large when 
the trajectory changes direction. To measure direction changes, let P be a metric that represents the 
percentage of vector entries that change sign in the update step i. 

p _ N ~ «£»(**)' sgnjx*-1) , . 
2N K ' 

Note that P has a maximum of 1 when all of the elements in x' have an opposite sign to those of x'-1, 
and a minimum of 0 when all corresponding elements of the two vectors agree in sign. Consider the 
following formula for rf 

rf = tf-l{l-aP) (6) 

where a is a fraction heuristically chosen to be 0.5 in order to guarantee that JJ will not be reduced by 
more than 50% at any update step. Besides providing a convergence to local minima, the update rule in 
(4) also provides accurate convergence to a global minimum once it is detected. 

A local minimum is detected when the update explosion" phenomenon occurs, i.e., when the mag- 
nitudes of all entries of the gradient dV/dx become less than a threshold 5. For bipolar neurons, V has 



a maximum of TV, and S is heuristically recommended to be (S < N/lOa). The update explosion can be 
expressed as follows: 

11*11 >'/? (7) 

where ß is the explosion threshold heuristically estimated as ß « ^- by substituting dV/dxi = S and 
V = N in equation (3). 

3. Escaping from local minima 

In the previous section, local minima detection technique has been presented. In this section we 
investigate a method for relocating the input vector whenever a local minimum is encountered along 
the input trajectory. The following new approach is based on [8] but differs in the form of the PDF used 
and in the manner in which it is utilized. 

The idea is to search randomly for a relocation vector that will guide the trajectory to a global 
minimum (solution). The random search is based on a PDF constructed over the input vector space x 
based on the local minima detected during the past search history. The value of the PDF around a local 
minimum detected by the search process is reduced based on a function located at the local minimum, 
while it is increased over the rest of the input vector space through normalization. To provide a better 
chance of convergence to a solution, the input vector is relocated to the point with the highest value of 
PDF. 

Formally, the PDF at the nth relocation (nth local minimum), p„(x), can be expressed as follows: 

n 

*,(*)= 7(l~I>(x)) (8) 

and 

_iHx-mi£ 
tf (x) = e hi (9) 

where #,(x) is a symmetric Gaussian function defined over the input space x, vector m,- represents the 
ith local minimum, A,- is the standard deviation of gt(x), and 7 is a normalization factor. In this sense, 
the PDF is modified whenever a local minimum is detected to avoid repeated convergence to the same 
local minimum. 

To calculate A,-, assume the attraction domain £2; associated with the local minimum m,- to be an 
JV-dimensional sphere of radius r,-. The attraction domains are assumed to be non-overlapping. 

fi,-nfy = ^       Vi#j. (10) 

where <j> is the empty set. Since the value of gt becomes negligible at 5Af- apart from the mean, an 
estimate of A,- that will satisfy the previous condition is chosen to be A,- = r,/5. We will also assume fli 
to be the smallest expected attraction domain. Accordingly, a safe value for Ai is heuristically assumed 
to be hi fn a/100. As will be shown, the proposed algorithm will, however, increase the value of hi (if 
necessary) automatically to better represent the actual minimum mi. 

Next, h{ satisfying (10) is found: 

,   _ \\mi - mk\\ 
hi ~ —10— (") 

where m* is a local minimum closest to m,-, i.e., \\rrii - mk\\ < ||m,- - rrij\\ Vj ^ i,k. Also, to satisfy 
condition (10), if ft* is larger than A,-, it should be reset to A,-. 

In the following, we present a practical method for generating samples from the PDF, p„(x), stated 
in equation (8). The method is inspired by the acceptance-rejection method due to Von Neumann [9]. 
To implement the method, let's define a univariate uniform distribution «(0,1), and an AT-dimensional 



multivariate uniform distribution v(x) over /, Also let /x(x) be the PDF scaled such that 0 < Ux)< 1 
Then, we generate a random variate U and a random vector X from ti(0,1) and v(x), respectively Ind 
follow the following test to see whether the inequality U < fx(X) holds: 

1. If the inequality holds, accept X as a vector generated from the PDF. 
2. If the inequality is violated, reject the pair U, X and try again. 

A sufficient number of samples to be generated was experimentally found to be n, « lOiV5 where N 
is assumed to be less than 10. The relocation discussed above represents a beginning of a new step in 
the search process. Accordingly, before using formula (4), t] should be reset to 1. 

4. Modifications 

So far, the relocation of the input vector trajectory was based only on the PDF, pn(x) In this section 
the input vector trajectory is relocated to the sample vector X that has the highest value of a criterion 
function, 4>(X), selected as follows: 

*(X) = MX) + p(X)+v(X), (12) 

U(x\- "ywi , % 

where fx(X) is the PDF scaled such that 0 < fs(x) < 1, while the factors M(X) and u{X) represent 
the new modification. Consider a number of samples generated from the PDF having equally high PDF 
values. A relocation to the closest sample to the current local minimum will help in detecting the closest 
next local minimum and, consequently, provide a better estimation of local minima's attraction domains 
a s. This is achieved by adding the new factor u{X) to the criterion function, *{X). On the other hand 
a sample that has a small value of the Lyapunov function V is more likely to be close to a minimum' 
The trajectory from such a sample to this minimum is shorter than others. A relocation to this sample 
will save computation time and provide faster convergence. The factor M(X) is added to the criterion 
function, i,(X), for this purpose. The constants in equations (13), (14) are chosen such that V[X) and 
fx{X) have a maximum contribution of 10% to the criterion function j>(X). 

Secondly, if an update explosion occurs very close to a previously detected local minimum rru, say 
within a distance of one tenth of its standard deviation A,-, the point is not considered a new local 
minimum. Instead, the situation is interpreted to be a repeated fall in the same local minimum. As a 
consequence, h; is increased, say by 20%, to better represent the actual attraction domain of this local 
minimum. 

• FinaJ1y'Jf .treat the Point where the input vector trajectory goes out of input range, /, as a local 
minimum. This avoids repeated convergence to the same point. 

5. Example simulations 

A software program was developed to implement the new algorithm. Many cases of continuous functions 
have successfully been tested. In this section, we present two experiments based on a two-layer feedforward 
neural network which maps a two-dimensional input space to a two-dimensional output space, i.e., 

ZrZ,*    ~ K t*ne "^ '? thC fifSt eXperiment has six aprons in its hidden layer, while the 
SS Tf "ÄVTT" TIar Slgm°idal neUr0nS W6re "* in ^ experiments. The augmented weight matrices of the first neural network are: 

1 1 1 1 .1 .1 w/ = .1 .1 .1 .1 1 1 
-4 -3 3 4 -1 1 

w- _ [ 3.2    -3.2     2-2     2-2    1.5 ] 
L    -5 .6     .5       .2     .8       .7    2.1 J (15) 



(a) (b) 

Fig. 1: Lyapunov functions and the input trajectories.  (A) Experiment 1 with a 2-6-2 model,  (b) Experiment 2 with a 
2-8-2 model. 

while those of the second network are: 

wr= 
i   ill  .i  .i .i .i 
.i a .i .i   i   ill 
-4-334-4-334 

W- -[1 
2    -3.2     2-2     2 
.5 .6    .5      .2    .8 

-2      2     - 
.7    .8 

-2       2 1 
.7    2.1 J (16) 

where wt represents hidden layer weights, and W2 represents output layer weights. 
The input space in both cases is denned by the compact set I = [—5,5]2. The Lyapunov functions and 

input trajectories for the first and second experiments are illustrated in Figures la and lb, respectively. 
In both cases, the starting point was selected arbitrarily and a solution was found very accurately at 
points having an rms error of 0.0001. In the two experiments, ß in equation (7) was chosen to be 10 and 
Ai was assumed to be 0.05. The attraction domains corresponding to local minima are shown by circles 
in the two figures. 

In the first experiment, Figure la shows the successful convergence of the trajectory to the local 
minimum, mj, based on the new proposed update rule. Once the local minimum is detected, the input 
vector is relocated to a point that guides the trajectory to the solution, G. In Figure lb, the trajectory 
detects a saddle point, mi, upon the first update. The saddle point is treated the same as a local 
minimum. Next, the trajectory detected a local minimum at rti2 then gets out of range at ni3, which is 
also treated the same as a local minimum. Finally, the trajectory detects the global minimum, G. 



6. Conclusion, 

In this paper, a novel algorithm for obtaining inverse mapping of continuous functions learned by mul- 
tilayer feedforward neural networks is presented. In numerous numerical experiments it has been found 
that the introduced input vector update with variable update coefficient assures accurate detection of 
local minima as well as accurate convergence to a global minimum (solution). Furthermore, we presented 
a fast method of escaping from local minima and reaching a solution, based on a PDF constructed over the 
input vector space and a proposed criterion function. Simulation results demonstrate the effectiveness of 
the proposed method in providing correct and efficient inverse mapping for various continuous functions. 
The method is applicable to algorithms of design centering and yield optimization as referenced in [10-11]. 
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Abstract—This paper describes a neural network based method of design centering for microelectronic 
circuits fabrication process. Process data are first evaluated for principal components and subsequently 
modeled using multilayer perceptron networks in a reduced and transformed input space. Perceptron network 
models are then inverted, and center settings of input variables are computed by using the inverse PCA 
transformation. The approach allows for maximizing the fabrication yield of GaAs circuits used in aviation 
electronics systems. Example of yield maximization for MMIC fabrication data is provided to illustrate the 
proposed technique. 

1. Introduction 

The design of the microelectronic integrated circuits involves consideration of the fabrication cost and leads   _. 
to the tradeoff between system specifications, such us complexity and frequency requirements, and acceptable 
fabrication yield [1].   The yield maximization of GaAs Microwave/Millimiter Wave Monolithic Integrated 
Circuits (MMIC) with respect to the material, process, and device parameters is the objective of this paper. 

The fabrication process model identification is an important step in the proposed design centering ap- 
proach [2]. Stages of the microelectronic circuit fabrication process can be efficiently modeled with multilayer 
perceptron neural networks (NN) and the Principal Component Analysis (PCA) of underlying data. These 
methods are found to be useful for capturing the relationships between various stages in the manufacturing 
process as well as between the process parameters and the resulting device parameters. Once the model is 
identified, a practical degree of design centering can be achieved by inverse modeling. In practice, the design 
centering problem requires the solution of the desired values of early manufacturing parameters (or process 
attributes) given the target performance and tolerance of the final product. 

The design centering approach introduced here is employed to improve the gate-final stage yield of GaAs 
0.5mmx200/xm MESFET fabrication process. The modeled parameters are extracted empirically. Ten post- 
gate characteristics are used as the model input: drain-source saturation current, drain-gate, gate-source, 
and drain-gate resistances, source resistance, drain resistance, pinch-off voltage, transconductance, gate-metal 
sheet resistance, and gate layer width. The output are eight final DC device characteristics: drain-source 
saturation current, drain-gate, gate-source, and drain-gate resistances, source resistance, drain resistance, 
pinch-off voltage, and transconductance. 

The modeling of each stage first requires PCA preprocessing and then building an NN, as shown in Fig. 1. 
The PCA extracts orthogonal principal directions in multidimensional input space in descending order as 
characterized by corresponding variances. This allows for reduction of the original input data dimension 
crucial for inverse modeling later on. The PCA provides linear operator matrices for the forward and inverse 
data transformation. An NN is used in the reduced space to approximate the relationship between input and 
output characteristics of a modeled stage. After training, the NN approximates a nonlinear vector function, 
which represents the stage-to-stage process model identification. 

A model acquired in this manner can be used for the design centering task. Assuming target values 
and tolerances for final semiconductor device characteristics at the final stage of the fabrication process, the 
desired values of the earlier stage parameters can be composed in two steps: first, the value of the intermediate 
variables at the network input satisfying the output target can be found by inverting the function performed by 
the trained network. Afterwards, the optimum values of these variables ensuring maximum yield probability 
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Fig. 1: Microfabrication stage model block diagram. N/R's represent normaljzation/denormalization steps. 

under noncorrelated normal distribution of process variations in the principal directions are estimated. Finally, 
the center settings for the original input variables are evaluated based on using the inverse PCA operator. 

2. Formalization of the design centering problem 

The VLSI microfabrication process is described by its input and output characteristics that are captured in 
available measurement data. Each data point reveals the input/output relationship resulting from the material 
and the technology. From the viewpoint of analysis, the data points taken at various locations of a wafer are 
regarded probabilistically as random events and are characterized by the input and output distributions. Thus 
let x and y be the input and output random variables in the form of an n-vector and m-vector, respectively, 
with the assumption that there are n input characteristics and m output characteristics for the given stage. 
The relationship between x and y can be formally expressed as a function ]x that maps input characteristics 
data into the output characteristics data: 

y-\i{x) (1) 

A center value xc needs to be set at the input in order to achieve a specific, required output (target value) y0 

during the stage fabrication process. However, due to the randomness of the fabrication factors, equipment 
imperfection and fluctuation of the settings, the actual x is randomly distributed around xc. When many 
factors are involved the random spread can be approximated by a Gaussian distribution with mean xc: 
p(x,xc) = N(xc,ax). Entries of x are correlated with each other due to the probabilistic dependencies 
between distributions of individual components in x which is manifested by non-zero off-diagonal entries in 
the covariance matrix. Moreover, the technology-related spread of characteristics is assumed to be beyond the 
user control. Only the center input value xc can be set when targeting the desired output y0. 

The goal of design centering in the fabrication process is to maximize the final product yield by choosing 
proper settings of the input parameters. The output characteristics are then expected to produce a given target 
value and fit into the tolerance limits with the highest probability. Assume that the product is acceptable if 
the target output value y0 is obtained with tolerance Sv. Define the target set uiy — {y : j^n^ <yi< 2/imax} 
Thus, each entry y* must belong to the region bounded by yimin = (1 - Syi)y0 and y*,^ = (1 + SVi)y0. 
Formally, the process yield can be characterized by probability Pr(y € uv). Since this probability is to be 
maximized and the only input parameter that can be controlled is the center input value xc, the definition of 
the design centering task now takes the following form: 

maxPr(y €o;y) (2) 

Expression (2) provides a functional for optimization. Note that input and output distributions are related 
through equation (1) and generally p(xc) ^ y0 due to nonlinearity of function /x. 

Typically, when creating a model of a stage, many measurements are taken of all relevant process factors 
or characteristics, but they are related to each other due to their mutual correlations. Since optimization in 
a multidimensional space is both difficult and time consuming, especially when nonlinear process models are 
involved, the space size is first reduced. By reducing the input space dimensionality, more efficient algorithms 
can be used while computational complexity can be reduced to a reasonable level. 

The entire fabrication process model consists of two components: PCA and modeling through NN. Re- 
lationships can be calculated in both directions, i.e., from input to output and from output to input. The 
intermediate variable «, referred to as "abstract variable," represents the normalized and compressed space in 
which the design centering will be performed. In the forward direction the output sample u can be obtained 
from input data sample x by using the PCA operator that projects x into u followed by the NN mapping 
u -* y. Given the desired output value y0, the corresponding variable UQ (if in existence) can be computed by 



an iterative search for solution using the inverse of the NN mapping. Subsequently, the corresponding input 
x can be found by using the inverse PCA operator. 

2.1. Principal Component Analysis 

As indicated in Fig. 1, the original input data is transformed into u by the PCA and two normalization 
stages. The input normalization of x is necessary to unbias the input data and balance their scaling. The 
PCA changes the input variables representation and reduces dimension from n to m, where m<n. Also, the 
data becomes uncorrelated after the PCA. Afterwards, another normalization equalizes each variable entry 
variance. The resulting data representation u is a random variable composed of m entries ut- of zero correlation 
between each other. The input data is characterized by means (a;») and standard deviations axi. Prior to the 
PCA, normalized input x is calculated using the following equation: 

Xi = ^M (3) 

The resulting variable x has zero mean and unit variance at each entry. Successively, eigenvectors of auto- 
correlation matrix R = (xxT) have to be found to obtain the PCA operators. Let u* be an eigenvector of 
matrix R and A* the corresponding eigenvalue such that they yield equation Rvk = A*«*. Additionally, let 
eigenvectors Vk be orthonormal so the norm v^Vk = 1 for each of the eigenvectors. It is also beneficial to use 
a descending order of eigenvalues, such that A* > \k+i- Eigenvectors w* span a new basis for the input data 
representation. A PCA operator matrix M can be created to transform input x into its projection v. in the 
new basis. Grouping first m eigenvectors of the largest eigenvalues in matrix M = [vk]T with k = 1, ... ,m 
creates a rectangular mxn matrix with property MMT = I. This matrix serves as the PCA operator which 
transforms input x into vector ü: 

ü = Mx (4) 

The new data points ü belong to an m-dimensional space which is reduced as compared to the original input 
space dimension. But in addition, data points ü are now uncorrelated, which can be expressed by {üü ) = A, 
where A is a diagonal matrix with entries A*, k = 1, ... ,m on the diagonal. In other words (üküf) = A* 
if k — I and (üküf) = 0 if k ^ I. This means that ü belongs to the m-dimensional distribution and A* is a 
variance of the k-th entry in this distribution. Note that A* is also a variance of the data points x projected 
onto the direction of eigenvector Vk which represents the k-th principal direction of the input data distribution. 
Since entries ü* have different variances another normalization step can simplify the data analysis. Denote 
the normalized data points by u. The normalization in this step is simple and reads: 

uk = -7f=ük (5) 

The new data representation has the property (uuT) — I suitable for design centering algorithms. Each point 
u can be inversely transformed to the original input space with the inverse PCA transformation operator 

B = MT (6) 

Due to the dimension reduction performed by operator M, point x and point obtained through inversion 
BMx are not identical if m < n. The data representation error is e = x — BMx. It may be shown [3] that 
the average squared error j|e||2 equals the sum of all eigenvalues associated with the eigenvectors not included 
in the PCA operator matrix M. Error norm |je||2 can be used in choosing the appropriate dimension m of 
the data points u space. 

2.2. Inverse projection through neural model 

Mapping x -» y representing the process is generally a continuous nonlinear function. The PCA part of the 
entire model is a linear transformation. Hence a function apprcodmator has to be used to complete the task of 
modeling the process. An NN [4] is proposed for this purpose. Additional normalization and denormalization 



^'(a-oü) 

»;(O-D 

a)   ' I b) 

Fig. 2: (a) Approximating the yield probability, (b) Movement of the solution with respect to a. 

steps need to be done at the network input and output to enable the network to learn the stage characteristics. 
Classic error backpropagation training has been found sufficient to train the neural network. For the sake of 
finding an input UQ yielding target output y0 through the neural model, the algorithm introduced in [5] will 
be used. Define the solution error as a norm E = \\y — y0ll2- The error gradient dEJdu will allow for iterative 
search in the u space for solution to the desired output y0. The gradient entries read: 

dE _T-^dE dyi 

duk dyi duk 
(7) 

Then u can be evaluated iteratively according to the steepest descent method: u'{ = u,-—K^ where K controls 
the algorithm convergence rate [6]. 

2.3. Optimization algorithm 

The solution to expression (2) should be searched in u-coordinates since they represent orthonormalized space 
for the input data distribution with reduced dimension. Define region wu such that implication (u € a>„) =>• 
(y € wy) is valid. In other words all the points u which belong to region wu will result in acceptable output 
values y — f(u). Note that the output space dimension is greater than m, therefore the inverse implication 
does not necessarily hold true, but still, Pr(y G wv) = Pr(u € wu) Since variable u space is orthonormalized, 
the data points distribution can now be represented by a symmetric m-dimensional Gaussian p(u, uc) centered 
at some uc that will be moved while optimization is performed: 

p(u,uc) = N(uc,a) = 
(•v/27rcr)' 

-e     SP (8) 

Here a — 1, and ||u — -«c|| is a norm of a distance between u and the center point «c. The PCA obviously 
yields uc = 0, however, the design centering will provide some non-zero value of tic that will be considered as 
a solution xc when transformed back into the input space. Denote the yield probability as pc which in the 
«-space can be described by the integral: 

Pc — Pr(ti G u>„) = /   p(u, uc)du 
J(JtL 

(9) 

Now assume that the space is uniformly covered by random points uk as shown in Fig. 2. The points 
neighborhoods s* composed together fill the entire space. If the number of points is sufficiently large, 
probability pc can be approximated by the sum pc = X^€<J.SjbP(u,uc)- Tlie goal °f tne design centering 
is equivalent to maximizing probability pc by moving the center point: max„c pc. The solution u* should be 
found as a result of an optimization algorithm with functional pc. Define gradient of pc that will be useful for 
this algorithm: 

-£ = £S'P(u*,«c)(-^) duc 2a2  dur 
ll«Jfc-""c|| (10) 



Gradient (10) indicates the direction toward which the center point should be moved in order to increase 
the yield probability pc. Assume that the optimization algorithm is used in the neighborhood of the global 
solution at this stage. The following simple gradient-based optimization algorithm is proposed: 

& = £.    «a«-. (ID 
Regarding now uc as time variable uc = uc{t) with initial condition u0, the differential equation has a 
fixed point at u*. As long as the initial condition is in the neighborhood of the global solution, the proposed 
algorithm will generate trajectory uc(t) that leads from uo to u*. Intuitively, choosing uo such that /(«o) = Vo 
brings uc close to u*c. This holds when / is linear, and is sufficient for nonlinear / with properties of smoothness 
and monotonicity resulting from technology and chemical processes. The need to evaluate terms at every point 
k with the algorithm described by (11) is a distinct disadvantage. Although dimensionality of the u-space is 
reduced due to PCA, the algorithm can still be computationally inefficient. The efficiency can be improved 
by the following redefinition: 

By now a was treated as a unity constant. However, during the optimization <r can be slowly varied, the result 
u* will be the same provided that the final value of a is 1. Let a be a parameter which will be slowly changed 
from some small initial value ao, up to 1 at the end of optimization. Perturbing a will affect the solution u* 
which now becomes a function u* = u*(<j). Parameter a can be used to control the number of points affecting 
the location of the final solution. 

3. Numerical results of the algorithm 

The data come from measurements taken on a 4 x4.5mm high density structure reticle repeated some 200 '< 
times per wafer. Process and device characteristics were measured at a sufficient density to fully characterize ■< 
variations across the wafer [7]. A horizontal slice of 14 reticles across the middle of the wafer was chosen for 
modeling purposes. This provided 69 data sets that allowed for examination of the most crucial variations and 
the effect they have on MMIC performance. Prior to the design centering the fabrication stage model has to 
be approximated based on the input-output characteristics. The general model shown in Fig. 1 requires the j 
PCA of the input characteristics. Using the collected measurement data related to the input, the normalized 1 
vector x is first obtained from equation (3). Successively, eigenvalues At of the normalized data autocorrelation % 
matrix R are calculated. Choosing abstract space dimension m = 2, the PCA operator matrix M is then built | 
of two eigenvectors associated with the largest two eigenvalues. Afterwards, new data points u are calculated | 
following equations (4) and (5). I 

To complete the model from Fig. 1 two layer feedforward NN with 2 inputs, 6 hidden units, and 8 outputs \ 
is trained using points u as the input training set and corresponding final characteristics measurements y 
as the output training set. Out of the 69 data sets the first 50 are used for training and the remaining 19 
serve as the testing set. The NN model will be later used to inversely calculate point tio corresponding to 
target output y0. Therefore, it is important to inspect the abstract space region in which the data points u 
are distributed. A solution u0 not belonging to the distribution of u should be considered as unacceptable 
and the corresponding target y0 treated as unavailable within the constructed neural model. At this stage 
the entire fabrication process model is developed. Using the model output characteristics y can be calculated 
based on any input x that belongs to the identified input characteristics' distribution. Conversely, by using 
the neural mapping inversion and inverse PCA operator, an input x for any output sample y can be found 
when y belongs to the output characteristics' distribution. The internal abstract representation u of both 
inputs and outputs is available for design centering tasks. i 

The goal of the following numerical illustration is to inspect and then maximize a simulated fabrication 
yield when the MESFET target characteristics y0 are required with tolerance S. Three tolerance S values: 5%, 
10%, and 15% are considered. By using the simple inversion-based approach and equations (5), (6), and (3), 
values of «o and XQ can be found. Fabrication yield is then estimated assuming that input characteristics are 
attempted around the inverse solution XQ. Due to variations resulting from technology some of the fabricated 
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Table 1:  Fabrication yield for inverse solution and centered 
solution with various allowed tolerances. 

tolerance <5 inverse xo centered xc 

5% 
10% 
15% 

7.2% 
27.1% 
52.1% 

7.5% 
27.6% 
55.8% 3      o 

Fig. 3: Design centering in MESFET gate-final fabrication 
stage. Diamond represents an inverse tto to target y0 in the 
abstract coordinates ui-U2- Centered value tic, indicated by 
the cross, allows for the yield maximization, within tolerance 
S equal 15%. 

—* 

-t -0.5 0 
u_1 

devices have final characteristics y off the required tolerance S which lowers the yield. To estimate the yield 
1000 random input points distributed around x0 with the original input data distribution variances are tested 
for tolerance requirements. The middle column in Table 1 contains the yield as a percentage number of points 
meeting the criteria. 

The approach introduced in the previous chapter can be employed to improve the yield. The inverse 
solution «o is regarded as an initial condition to the optimization algorithm described by equation (12). 
Points neighboring u0 are inspected for tolerance criterion after mapping to the output. Neighborhood of u0 

is shown in Fig. 3 for 15% tolerance S. Points u which fail to fall into the tolerance region after mapping to 
the output are marked with dots in these figures. Thus the blank area surrounded by dotted boundaries is the 
projection of the output tolerance region into the abstract space. Starting with the initial u0, the optimization 
algorithm drags the center point to another location uc, which is considered the centered solution to the yield 
maximization task. Afterwards, the centered point uc is transformed into the original input space and results 
with desired centered input xc. The yield for these new centered solutions is then estimated in the same 
manner as for xQ. The improved yield is shown in the right column in Table 1. As indicated in the table the 
design centering improves the yield, especially when large tolerance for the target y0 is required. 

4. Conclusions 

The presented design centering approach allows for yield maximization in fabrication processes without ma- 
jor changes to technology and available means. The yield can be significantly improved when nonlinear 
relationships are involved in the process characterization. This is the case in GaAs microelectronic devices 
manufacturing. The design centering algorithm can efficiently work even with a large amount of measurement 
data since Principal Component Analysis of the data reduces the problem size and the "curse of dimensionality" 
is avoided. 

■5 
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Abstract—This paper describes a practical 
method of design centering for microelec- 
tronic circuits fabrication process.   Process 
data are first evaluated for principal compo- 
nents and subsequently modeled using mul- 
tilayer perceptron networks in a reduced and 
transformed input space.   Perceptron net- 
work models are then inverted, and center 
settings of input variables are computed by 
using the inverse PCA transformation. The 
approach allows for maximizing the yield 
of fabricated GaAs circuits used in aviation 
electronics systems. Example of yield maxi- 
mization for MMIC fabrication data is pro- 
vided to illustrate the proposed technique. 
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1.   INTRODUCTION 

The majority of the development cost for 
many military systems lies in the design and 
fabrication of the microelectronic integrated 
circuits (IC). In order to achieve acceptable 
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fabrication yield, the integrated circuits need 
to meet certain difficult system specifications 
involving complexity and frequency require- 
ments [1]. 

The goal of this work is to maximize the fab- 
rication yield of Gallium Arsenide (GaAs) 
Microwave/Millimeter Wave Monolithic In- 
tegrated Circuits (MMIC) with respect to 
the material, process, and device parame- 
ters, while achieving the best possible circuit 
performance. The techniques developed in 
the present research are applicable to GaAs 
IC technology and are also valid for other 
fabrication technologies, such as CMOS or 
BiCMOS technology. 

Stages of the microelectronic circuit fabrica- 
tion process can be efficiently modeled with 
multilayer perceptron neural networks (NN) 
supported by Principal Component Analysis 
(PCA) of the underlying data. These spe- 
cific tools are found to be useful for captur- 
ing the relationships between various stages 
in the manufacturing process as well as be- 
tween the process parameters and the result- 
ing device parameters. Once the model is 
identified, a practical degree of design cen- 
tering can be achieved by inverse modeling. 
In practice, the design centering problem re- 
quires the solution of the desired values of 
early manufacturing parameters (or process 
attributes) given the target performance of 
the final product. 

The first step in the design centering is the 



fabrication process model identification [2]. 
The following critical stages of the GaAs IC 
fabrication process were selected for mod- 
eling [3]: substrate/active layer (S), post- 
contact/recess (CR), post-gate-metal (G), 
and final (F). The measurement data distri- 
bution for the S process stage consists of ten 
substrate characteristics: two optical scat- 
terings, Neut deep donor density, substrate 
resistivity, Hall mobility and carrier concen- 
tration, doping concentration, implant acti- 
vation, drift mobility I, and drift mobility II. 

Measurements for stage CR include: drain- 
source saturation currents and resistances 
(both contact and recess), contact resis- 
tance, contact and ohmic metal sheet re- 
sistance and ohmic metal layer width. 
G and F stage characteristics are the MES- 
FET DC parameters: drain, gate, source, 
drain-source, drain-gate and gate-source re- 
sistances, drain-source saturation current, 
pinch-off voltage and device transconduc- 
tance. Also, gate metal sheet resistance and 
gate metal width are included in the G stage 
measurements. 

The modeling of each stage requires first 
PC A preprocessing and then building a neu- 
ral network, as shown in Fig. 1. The PC A ex- 
tracts orthogonal principal directions in mul- 
tidimensional input space in descending or- 
der as characterized by corresponding eigen- 
values (variances). This allows for reduction 
of the original input data dimension crucial 
for inverse modeling later on. The PCA pro- 
vides matrices M and B which are the for- 
ward (compressing) and inverse (expanding) 
linear operators, respectively. Preliminary 
calculations indicate that the characteristics 
describing the consecutive fabrication stages 
are mutually correlated between each other. 
The data distribution for stages S (10 vari- 
ables), CR (8 variables) and G (10 variables) 
can be reduced to 6, 5 and 7 abstract vari- 
ables, respectively, with normalized estima- 
tion error better than 1% (after compresion 

and expansion). 

A multilayer perceptron neural network is 
used following the dimension reduction to 
approximate the relationship between in- 
put and output characteristics of a modeled 
stage. After training the NN performs non- 
linear vector function / which represents the 
stage to stage process model identification. 

The model acquired in this manner can be 
used for the design centering task. Assuming 
target values and tolerances for final semi- 
conductor device characteristics at stage F 
of the fabrication process, the desired val- 
ues of earlier stages S, CR or G parameters 
can be obtained in two steps: first the value 
of the abstract variables at the network in- 
put satisfying the output target can be found 
by inverting the function performed by the 
trained network. Afterwards, the optimum 
values of these variables ensuring maximum 
yield probability under noncorrelated nor- 
mal distribution of process variations in the 
principal directions are estimated. Finally, 
the center settings for the original input vari- 
ables are evaluated based on using inverse 
PCA operator B. 

2.     FORMALIZATION OF THE DESIGN 
CENTERING PROBLEM 

The VLSI microfabrication process is de- 
scribed by its input and output characteris- 
tics that are captured in available measure- 
ment data. This allows for fabrication pro- 
cess identification. Each data point reveals 
the input/output relationship resulting from 
the material and the technology. From the 
viewpoint of analysis, the data points taken 
at various locations of a wafer are regarded 
probabilistically as random events and are 
characterized by the input and output dis- 
tributions. Thus let x and y be the input 
and output random variables in the form of 
an n-vector and m-vector, respectively, with 



the assumption that there are n input char- 
acteristics and m output characteristics for 
the given stage. 

The relationship between x and y can be for- 
mally expressed as a function \i that maps in- 
put characteristics data into the output char- 
acteristics data: 

erance 5y. Define the target set uv as follows: 

y = Kx) (i) 

A center value xc is to be maintained at the 
input in order to achieve a specific, required 
output (target value) y0 during the stage 
fabrication process. However, due to the 
randomness of the fabrication factors, equip- 
ment imperfection and fluctuation of the set- 
tings, the actual x is typically randomly dis- 
tributed around xc. When many factors are 
involved and many fabrication cases consid- 
ered, the random spread can be approxi- 
mated by a Gaussian distribution with mean 
xc and covariance matrix ax. The input dis- 
tribution thus reads 

p(x,xc) = N(xc,ax) (2) 

Here, p(x,xc) represents the actual distri- 
bution of input values x when maintain- 
ing the center value xc is attempted. En- 
tries in vector x are expected to correlate 
with each other due to probabilistic depen- 
dencies between distributions of individual 
components in x is manifested by non-zero 
off-diagonal entries in covariance matrix ax. 
Moreover, the technology related spread of 
characteristics is assumed to be beyond con- 
trol. Only the center input value xc can be 
set when targeting at desired output y0. 

The goal of design centering in the fabrica- 
tion process is to maximize the final product 
yield by choosing proper settings of the in- 
put parameters. The output characteristics 
are then expected to produce a given target 
value and fit into the tolerance limits. As- 
sume that the product is acceptable if the 
target output value y0 is obtained with tol- 

U-u {y y.r < yi < y.wx)     (3) 

Thus, each entry y,- must belong to the re- 
gion bounded by y,min = (1 - 6Vi)y0 and 
y«'max = (1 + tVi)yo- Formally, the pro- 
cess yield can be characterized by probabil- 
ity Pr(y € uy). Since this probability is to 
be maximized and the only input parame- 
ter that can be controlled is the center input 
value xc, the definition of the design center- 
ing task now takes the following form: 

(4) maxPr(y € w„) 

Equation (4) provides a functional for op- 
timization. Maximizing this functional is 
equivalent to maximizing the process yield. 
Note that input and output distributions are 
related through equation (1) and generally 
fi(xc) 7^ Vo due to nonlinearity of function fx. 

3.    THE APPROACH 

Typically, when creating a model of a stage 
many measurements are taken of all relevant 
process factors or characteristics. Most of 
the inspected characteristics are related to 
each other due to their mutual correlations. 
The design centering is an optimization pro- 
cess and will involve all of these input fac- 
tors. Since optimization in a multidimen- 
sional space is both difficult and time con- 
suming, especially when nonlinear process 
models are involved, the space size is first 
reduced. By reducing the input space di- 
mensionality, more efficient algorithms can 
be used while computational complexity can 
be reduced to a reasonable level. 

The entire fabrication process model consists 
of two components: PC A and the neural 
network modeling through MPNN. Relation- 
ships can be calculated in both directions, 
i.e., from the input to the output and from 
the output to the input. Thus four opera- 
tions are required to handle the data.  The 
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Fig. 1. Microfabrication stage model block diagram. 

intermediate variable u, refered to as "ab- 
stract variable" represents normalized and 
compressed space, in which the design cen- 
tering will be performed. 

In the forward direction the output sample 
u can be obtained from input data sample 
x by using the PCA operator that projects 
x into u and then the neural network map- 
ping u—±y. Given the desired output value 
y0, the corresponding variable u0 (if in ex- 
istence) can be computed by an iterative 
search for solution using the inverse of the 
neural network mapping. Subsequently, the 
corresponding input x can be found by using 
inverse PCA operator. 

Principal Component Analysis 

The Principal Component Analysis (PCA) 
of the measurements of input characteristics 
is used in order to reduce the model input 
dimensionality. As indicated in Fig. 1, the 
original input data is transformed into u by 
the PCA and two normalization stages. The 
input normalization of x is necessary to un- 
bias the input data and balance their scaling. 
The PCA changes the input variables repre- 
sentation and reduces dimension from n to 
m, where m < n.   Also, the data becomes 
uncorrelated after the PCA. Afterwards, an- 
other normalization equalizes each variable 
entry variance. The resulting data represen- 
tation, referred to as u, is a random variable 
composed of m entries txf- of zero correlation 
between each other. This property will sub- 
stantially simplify the design centering de- 
scribed later on.   The following is the de- 
scription of variable transformation x -*• u. 

The input data is characterized by means 
(xi) and standard deviations axi. Prior to 
the PCA, normalized input x is calculated 
using the following equation: 

Xi - (Xi) 
x; = (5) 

The resulting variable x has zero mean and 
unit variance at each entry Successively, au- 
tocorrelation matrix R is calculated as fol- 
lows: 

T) (6) R = {xxT' 

In order to obtain a PCA operator, eigen- 
vectors of matrix R have to first be found. 
Let vk be an eigenvector of matrix R and Xk 

the corresponding eigenvalue, such that they 
yield the equation: 

Rvk = Xkvk (7) 

Additionally, let eigenvectors vk be or- 
thonormal so the norm vjvk = 1 for each 
of the eigenvectors. It is also beneficial to 
use a descending order of eigenvalues, such 
that A* > Afc+i. 

Eigenvectors vk span a new basis for the in- 
put data representation. A PCA operator 
matrix M can be created to transform in- 
put x into its projection ü in the new basis. 
Grouping first m eigenvectors of the largest 
eigenvalues in matrix M: 

M = [vkf k=l, . m 

(8) 

creates a rectangular m x n matrix having 
property MMT = /. This matrix serves as 
the PCA operator which transforms input x 
into vector tt: 

ü = Mx (9) 



The. new datapoints ü belong to an m- 
dimensional space which is reduced as com- 
pared to the original input space dimen- 
sion. But in addition, data points ü are 
now uncorrelated, which can be expressed 
by {üü ) = A, where A is a diagonal matrix 
with entries A*, k = 1, ... ,m on the diag- 
onal. In other words (ujtuf) = A* if k = / 
and {ükuj) = 0 if k ^ /. This means that 
u belongs to the m-dimensional distribution 
and A* is a variance of the fc-th entry in this 
distribution. Note that A* is also a variance 
of the datapoints x projected onto the direc- 
tion of eigenvector Vk which represents the 
Ar-th principal direction of the input data dis- 
tribution. 

Since entries ük have different variances an- 
other normalization step can simplify the 
data analysis. Denote the normalized data- 
points by u. The normalization in this step 
is simple and reads: 

1   « 
Uk - -7F=Ufc (10) 

VA* 

Finally, by following steps expressed by 
equations (5), (9), and (10) each of input 
data point x can be transformed into point 
u in the new, reduced space. The new data 
representation has the property {uuT) = / 
making it suitable for design centering algo- 
rithms. Each point u can be inversely trans- 
formed to the original input space with a 
controlled degree of accuracy depending on 
dimension m. Let B be the inverse PCA 
transformation operator 

B = MT (11) 

Due to the dimension reduction performed 
by operator M, point x and inversely ob- 
tained point BMx are not identical if m < 
n. 

Define an error of data representation in the 
reduced space related to the model input as 
a difference between the original point x and 

its representation 

e = x — BMx (12) 

It may be shown [4] that the average squared 
error ||e||2 equals the sum of all eigenval- 
ues associated with the eigenvectors not in- 
cluded in the PCA operator matrix M: 

||e||2 = (eTe) =   ±   Xk        (13) 

Error norm ||e||2 can be used in computing 
the dimension m of the data points u space. 
Note that this error is related to the PCA 
only and is a part of the error of the entire 
fabrication process model. 

Inverse projection through neural model 

Mapping x —> y representing the process 
is generally a continuous nonlinear function. 
The PCA part of the entire model is a lin- 
ear transformation. Hence a function ap- 
proximator has to be used to complete the 
task of modeling the fabrication process. An 
MPNN [5] is proposed for this purpose. Ad- 
ditional normalization and renormalization 
steps need to be done at the network in- 
put and output to enable the network learn 
the stage characteristics. Classic error back- 
propagation training is sufficient to train the 
neural network. 

For the sake of finding an input u0 given 
target output y0 through the neural model 
the algorithm, introduced in [6] will be used. 
Define solution error E as a norm: 

E = \\y-y0\? (14) 

The error gradient dEjdu will allow for it- 
erative search in the u space for solution to 
the desired output y0. The gradient entries 
read: 

dE 
duk 

= £ dEdv 
dyi duk 

(15) 



Then u can be evaluated iteratively accord- 
ing to the steepest descent method: 

, dE „,. = „,._*__ (16) 

where K controls the algorithm convergence 
rate [7]. 

Optimization algorithm 

The solution to expression (4) should be 
searched in u-coordinates since they rep- 
resent orthonormalized space for the input 
data distribution with reduced dimension. 
Region uy represents all acceptable output 
variable values resulting from the tolerance 
and target point requirements. Define region 
uu such that implication (u € cou) ^(j/e 
uy) is valid. In other words all the points u 
which belong to region uu will result in ac- 
ceptable output values y - f(u). Note that 
the output space dimension is greater than 
m, therefore the inverse implication does not 
neccessarily hold true. Nevertheless the fol- 
lowing probabilities are equal: 

Pr(y e u>y) = Pr(u £ uu) (17) 

Since variable u space is orthonormalized, 
the data points distribution can now be 
represented by a symmetric m-dimensional 
Gaussian p(u, uc) centered at some uc that 
will be moved while optimization: 

p{u,uc) = N(uc,<r) = 1 

(V^7r<r)r 

(18) 

Here a equals 1 and is used for further pur- 
poses, and || u - ttc|| is a norm of a dis- 
tance between variable u value and the cen- 
ter point uc. The PCA obviously yields 
«c = 0, however, the design centering will 
provide some non-zero value of uc that will 
be considered as a solution xe when trans- 
formed back into the input space. 

Denote the yield probability as pc.   In the 

Fig. 2. Approximating the yield probability. 

u-space it can be described by the integral: 

pc = Pr(ti 6w„)= /   p{u,uc)du 
(19) 

Now assume that the space is uniformly 
covered by random points uk, as shown in 
Fig. 2. The points neighborhoods sk com- 
posed together fill the entire space. The 
points belonging to region u?u create set S 
such that the volume of uu equals VWu = 
likes sk- If the number of points is suffi- 
ciently large, probability pc can be approxi- 
mated by the following sum: 

Pc = £)sjfcp(ti,uc) (20) 

The goal of the design centering is equivalent 
to maximizing probability pc by moving the 
center point uc: 

maxpc (21) 

The solution to (21) is a point u* that should 
be found as a result of an optimization algo- 
rithm with functional pc. Define gradient of 
pc that will be useful for this algorithm: 

■^T = Y:^p(uk,uc)(-—) 
du 

*€* 2o-2jdue 
«it - «c 

(22) 

Gradient (22) indicates the direction toward 
which the center point should be moved in 
order to increase the yield probability pc. At 
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Fig. 3. Movement of the solution with respect to cr. 

the solution u* the gradient is zero: 

dpc 
duc 

= 0 (23) 

Generally, this gradient can be zero at more 
than one point, however, not each of these 
points represents the global solution of max- 
imum probability pc. Assume that the opti- 
mization algorithm is used in the neighbor- 
hood of the global solution at this stage. The 
following simple gradient-based optimization 
algorithm is proposed: 

duc      dPc uc(0) = u0 

(24) 
dt       du. 

Regarding now uc as time variable uc = 
uc(t) with initial condition u0, the differen- 
tial equation has a fixed point at u*c satisfy- 
ing equation (23). As long as the initial con- 
dition is in the neighborhood of the global 
solution, the proposed algorithm will gener- 
ate trajectory uc(t) that leads from u0 to u*. 
Refer to Fig. 3 for explanation of the fixed 
point concept. Intuitively, choosing u0 such 
that f(u0) = y0 brings uc close to u*. This 
would work perfectly if / was linear, but is 
sufficient for nonlinear / with properties of 
smoothness and monotonicity resulting from 
technology and chemical processes. 

The need to evaluate terms at every point k 
in the algorithm described by (24) is a dis- 

tinct disadvantage. Although dimensional- 
ity of the u-space is reduced due to PCA, 
the algorithm can still be computationally 
inefficient. The efficiency can be improved 
by the following redefinition. Note that 
djt = -fti1 ~Pc)- Probability (1 -pc) repre- 
sents points that miss the target region and 
can be used for the algorithm as well: 

'K - Well2 
duc     ^ 1 

dt k$S 2«T
2
 du,. 

(25) 

By now a was treated as a unity constant. 
However, while the optimization a can be 
slowly varied, the result u* will be the same 
provided that the final value of a is 1. Let a 
be a parameter which will be slowly changed 
from some small initial value <r0, up to 1 at 
the end of optimization. Perturbing a will 
affect the solution u* location which now be- 
comes a function of a: 

< = <{<?) (26) 

Parameter a can be used to control the num- 
ber of points affecting the solution location. 

4.   APPLICATION TO YIELD 

OPTIMIZATION OF GATE-FINAL 

FABRICATION STAGE 

The design centering approach introduced in 
this work is employed to improve the gate- 
final stage yield of GaAs 0.5mm x200/zm 
MESFET fabrication process. The mod- 
eled parameters are extracted empirically. 
Ten post-gate characteristics are used as the 
model input x: 

• G-Idss, drain-source sat. current (mA/mm) 
• G-Rds, drain-gate resistance (ü-mm) 
• G-Rgs, gate-source resistance (fl-mm) 
• G-Rs, source resistance (fi-mm) 
• G-Rdg, drain-gate resistance (fl-mm) 
• G-Rd, drain resistance (fi-mm) 
• G-Vpo, pinch-off voltage (V) 
• G-Gm, transconductance (mS/mm) 



TABLE I 
EIGENVALUES OF NORMALIZED INPUT 

MEASUREMENT POINTS X AUTOCORRELATION 

MATRIX. 

k A* 
1 5.22504 
2 1.8639 
3 1.28745 
4 0.820715 
5 0.54935 
6 0.103034 
7 0.0740204 
8 0.059971 
9 0.00934686 
10 0.00717611 1 

• G-Rsh, gate-metal sheet resistance (fi-mm) 
• G-Wg, gate layer width (/zm) 

The output y consists of eight final DC de- 
vice characteristics: 

• F-Idss, drain-source sat. current (mA/mm) 
• F-Rds, drain-gate resistance (fi-mm) 
• F-Rgs, gate-source resistance (fi-mm) 
• F-Rs, source resistance (fi-mm) 
• F-Rdg, drain-gate resistance (fi-mm) 
• F-Rd, drain resistance (ft-mm) 
• F-Vpo, pinch-off voltage (V) 
• F-Gm, transconductance (mS/mm) 

The data come from measurements taken on 
a 4 x 4.5mm high density structure reticle re- 
peated some 200 times per wafer. Process 
and device characteristics were measured at 
a sufficient density to fully characterize vari- 
ations across the wafer [3]. A horizontal slice 
of 14 reticles across the middle of the wafer 
was chosen for modeling purposes. These 
reticles were chosen since they contained the 
only available properly formatted substrate 
and active layer characteristics. This pro- 
vided 69 data sets that allowed for examina- 
tion of the most crucial variations and the 
effect they have on MMIC performance. 

Prior to the design centering the fabrication 
stage model has to be obtained based on the 
input-output characteristics. The general 
model shown in Fig. 1 requires the PCA of 
the input characteristics. Using the collected 
measurement data related to the input, the 
normalized vector x is first obtained from 
equation (5). Successively, eigenvalues A* of 
the normalized data autocorrelation matrix 
R are calculated using equation (7). The 
eigenvalues are shown in Table I. 

Choosing abstract space dimension m = 2, 
3 x 10 PCA operator matrix M is then 
built of two eigenvectors associated with the 
largest two eigenvalues. Afterwards, new 
data points u are calculated following equa- 
tions (9) and (10). 

To complete the model from Fig. 1 two layer 
feedforward neural network with 2 inputs, 
22 hidden units, and 8 outputs is trained us- 
ing points « as the input training set and 
corresponding final characteristics measure- 
ments y as the output training set. Out of 
the 69 data sets the first 50 are used for 
training and the remaining 19 serve as the 
testing set. The neural network model will 
be later used to inversely calculate point u0 

corresponding to target output y0. There- 
fore, inspecting the abstract space region in 
which the data points u are distributed is 
of importance. A solution «o not belonging 
to the distribution of u should be consid- 
ered as unacceptable and the corresponding 
target y0 treated as unavailable within the 
constructed neural model. 

The distribution of u and the distribution of 
the output points y projected into the ab- 
stract space in the same manner as the in- 
put are shown in Fig. 4a and 4b separately 
for the training and testing pairs u -)• y. 
Sharp ends of the arrows represent points u 
whereas the heads of the arrows indicate pro- 
jected outputs. Arrows themselves represent 
mapping that is to be performed by the net- 
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Fig. 4. Representation of the neural required map- 
ping in the abstract space. Arrows start at data 
points u and end at projections of the output 
data points y. (a) Training pairs (b) testing 
pairs. 

work. The trained network is able to inter- 
polate only within the region where points u 
are distributed. The actual mapping learned 
by the network is visualized in Fig. 5 for a 
large number of random samples distributed 
uniformly in the u space. 

At this stage the entire fabrication process 
model is developed. Using the model output 
characteristics y can be calculated based on 
any input x that belongs to the identified in- 
put characteristics' distribution. Conversely, 
by using the neural mapping inversion and 

Fig. 5. Actual mapping performed by the trained 
neural network sampled at random points of the 
abstract space. 

TABLE II 

TARGET MESFET CHARACTERISTICS 

Characteristics Target value 
F-Idss 224.0 
F-Rds 2.674 
F-Rgs 3.514 
F-Rs 0.8926 

F-Rdg 3.678 
F-Rd 1.053 

F-Vpo -1.495 
F-Gm 201.1        1 

inverse PCA operator, an input x for any 
output sample y can be found when y be- 
longs to the output characteristics' distribu- 
tion. The internal abstract representation u 
of both inputs and outputs is available for 
design centering tasks. 

The goal of the following numerical illustra- 
tion is to inspect and then maximize a MES- 
FET simulated fabrication yield when the 
device target characteristics yQ are required 
with tolerance 6. The target y0 is shown in 
Table II. Three tolerance 5 values: 5%, 10%, 
and 15% are considered. 



TABLE III 
FABRICATION YIELD FOR INVERSE SOLUTION AND 

CENTERED SOLUTION WITH VARIOUS ALLOWED 

TOLERANCES. 

s inverse x0 centered xc 

5% 
10% 
15% 

7.2% 
27.1% 
52.1% 

7.5% 
27.6% 
55.8% 

By using a simple inversion-based approach, 
values of u0 and x0 can be found from equa- 
tions (16) and then (10), (11), and (5). The 
inverse solution for input characteristics x0 

is included in the left column of Table IV. 

Fabrication yield is then estimated assum- 
ing that input characteristics are attempted 
to be centered around the inverse solution 
x0. Due to variations resulting from technol- 
ogy some of the fabricated devices have final 
characteristics y off the required tolerance 
S which lowers the yield. To estimate the 
yield 1000 random input points distributed 
around xQ with the original input data distri- 
bution variances are tested for tolerance re- 
quirements. The middle column in Table III 

Contains the yield as a percentage number of 
points meeting the criteria. 

The approach introduced in the previous 
chapter can be employed to improve the 
yield. The inverse solution UQ is regarded 
as an initial condition to the optimiza- 
tion algorithm described by equation (25). 
Points neighboring UQ are inspected for tol- 
erance criterium after mapping to the out- 
put. Neighborhood of UQ is shown in Fig. 6 
for various tolerances 5. Points u which fail 
to fall into the tolerance region after map- 
ping to the output as in equation (3), are 
marked with dots in these figures. Thus the 
blank area surrounded by dotted boundaries 
is the projection of the output tolerance re- 
gion into the abstract space. Starting with 
the initial «0, the optimization algorithm 
drags the center point to another location 
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Fig. 6. Design centering in MESFET gate-final fabri- 
cation stage. Diamond represents an inverse «0 

to target y0 in the abstract coordinates «i-u2. 
Centered value «c, indicated by the cross, allows 
for the yield maximization, within tolerances S 
equal (a) 5%, (b) 10%, and (c) 15%. 



TABLE IV 

INVERSE AND CENTERED SOLUTIONS FOR GIVEN TARGET AND TOLERANCES. 

Characteristics *o xc(5%) *c(10%) *c(15%) 
G-Idss 218.661 218.45 217.853 214.729 
G-Rds 2.85771 2.85954 2.8644 2.88793 
G-Rgs 3.76301 3.76394 3.76624 3.77608 
G-Rs 1.09795 1.09804 1.09836 1.10043 

G-Rdg 3.44558 3.44691 3.45003 3.46232 
G-Rd 0.797384 0.797955 0.799305 0.804678 

G-Vpo -1.22247 -1.22169 -1.22055 -1.22155 
G-Gm 203.292 203.254 203.15 202.614 
G-Rsh 0.0584099 0.058427 0.0584712 0.058677 
G-Wg 10.0784 10.0784 10.0784 10.0794 

uc, which is considered the centered solu- 
tion to the yield maximization task. After- 
wards, the centered point uc is transformed 
into the original input space and results with 
desired centered input xc. Solutions for the 
three values of tolerance are shown in the 
right three columns of Table IV. The yield 
for these new centered solutions is then es- 
timated in the same manner as for x0. The 
improved yield is shown in the right column 
in Table III. As indicated in the table the de- 
sign centering improves the yield especially 
when large tolerance for the target yQ is re- 
quired. 

5.   CONCLUSIONS 

The presented design centering approach al- 
lows for yield maximization in fabrication 
processes without major changes to technol- 
ogy and available means. The yield can be 
significantly improved when nonlinear rela- 
tionships are involved in the process charac- 
terization. This is the case in GaAs micro- 
electronic devices manufacturing. The de- 
sign centering algorithm can efficiently work 
even with large amount of measurement data 
since Principal Component Analysis of the 
data reduces the problem size and the "curse 
of dimensionality" is avoided. 
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Abstract 

This paper provides an overview of research focused on the utilization of neuro- 
computing technology to model critical in-process GaAs l'C material and device 
characteristics. Artificial neural nctv/orks are employed to develop neural network 
models of complex relationships between material and device characteristics at 
critical stages of the semiconductor fabrication process. Measurements taken and 
subsequently used in modeling include doping concentrations, layer thicknesses, 
planar geometries, resistivities, and device voltages, and currents. The neural 
network architecture utilized in this research is the multilayer pcrceptron neural 
network (MLPNN). The MLPNN is trained in the supervised mode using the 
generalized delta learning rule. The MLPNN has demonstrated with good results the 
ability to model these characteristics and provide an effective tool for parametric 
yield prediction and whole wafer characterization in semiconductor manufacturing. 

I. INTRODUCTION 

Integrated-circuit (IC) technologies are expected to produce uniform device properties over 
a large wafer area. This uniformity is difficult to achieve for GaAs IC technology because of 
material and processing deviations. There are large variations, within a wafer, of important 
material properties which strongly influence vield-limiting factors in final device performance. In 
part, these material problems arise because of strong radial and axial variations in thermal gradients 
during bulk crystal growth, which affect local stoictriometry [1]. Other yield-limiting non- 
uniformities occur during the wafer fabrication process [2,3]. It is essential that these variations 
and the effects thev have on device/circuit performance are understood and properly modeled. 

Traditional IC process/device modeling approaches, whether analytical or empirical, do not 
utilize the parametric values specific to a certain device's location on a wafer. Variations of 
parametric values aie Ivpiuzdly icpicsuul^d sUdisliually. AUudiy the vilucs ii£ lAiidiill variables 
described by joint probability density functions [4,5]. Once the statistical distribution is 
determined, the eriects or tne'se variations on the device/circuits performance is analyzed by 
UClfuiUliilg äimulaLujid hy mc<iii:> vf, oiuuiig uUioia, MunU. Cailu lvvliiu4wa [0, f\- 

Af. shown in [1,8,9]. many of these parametric variations do not occur in a random 
manner acror.r. a wafer but in a radial and/or axial pattern. Also, due to the physical correlations 
existing between FHT characteristics these parameters should not he treated as uncorrciated, 

This paper was partially supported by ONR Grant-N00014-93-1-0855 



mutually independent random variables [10,11]. The modeling approach described in this paper 
presents a methodology in which a specific device's characteristics can be modeled based on its 
physical location within a wafer. Correlated valuations are represented in the characteristic values 
of each individual device. 

This research has focused on many different aspects of neural network modeling of 
semiconductor characteristics, two of which are presented in this paper. First, the development of 
neural network models for the estimation of IC parametric yield is demonstrated. Measurements of 
material and/or device characteristics taken at earlier fabrication stages are used to develop models 
of the final DC parameters. Yield-limiting characteristics are modeled and the resulting value 
compared to acceptance windows to estimate the parametric yield. Secondly, neural network 
models arc developed in the inverse direction. Characteristics measured at Final are used as the 
input to model critical in-process characteristics. The modeled characteristics are used for whole 
wafer mapping and statistical characterization. This characterization can be accomplished with 
minimal in-process testing. 

The concepts and methodologies used in the development of the neuro-models are 
presented. The modeling results are provided and compared to the actual measured values of each 
characteristic. A discussion of these results and the direction that any further research should take 
is provided. 

II. PROCESS/DEVICE CHARACTERIZATION 

IC manufacturing consists of many distinguishable fabrications stages. A large and representative 
number of measurements of process attributes, key device parameters, and layout geometries taken 
during the fabrication process is needed to provide a statistical database for neural network 
modeling of the process and/or IC devices. The classical method for obtaining the characteristics 
of semiconductor 'materials, prnraissfis, and rtirvioos is to collet data from Tniaofslfinirnnin fesr 
structures [12] [13]. 

The test data used in this work was taken across an entire wafer at a sufficient density to 
fully characterize the fabrication process and device variations across the wafer. The measurement 
data used for characterization originated from a 4x4.5 mm high-density test structure reticle 
repeated some 200 times on a 3" Gallium Arsenide (GaAs) wafer. Each reticle contains an array of 
microelectronic test structures developed to analyze the uniformity of the fabrication process and 
the resulting device/circuit performance characteristics. The majority of the characteristics were 
measured Oü the Metal Seiiiicümluetoi Field EffecL Tiausiskn (MESFET) device. This lest 
structure/device (referred to as device from this point on) is at the center of this modeling effort. 

Whole wafer testing was conducted on the starting substrate material (S) and during wafer 
processing at four critical steps: Ohmic or Post-contact (C), Post-recess (R), Post-gate (O), and at 
the completion of fabrication (Final or F). A discussion of the physical significance of each 
measured nh a ramm stir, nsftfl in This mndr.ling pffnrr is hf.ynnd The, smpe nf this papp.r Howpiwir, 
Table 1, lists each characteristic by the fabrication stage which they characterize, name, and 
symbol Parameters which characterize the same fabrication stage are grouped together and serve 
w input-output for each neuivwiwdil developed. 

The characteristics were measured across the entire wafer in one test sweep. The parameter 
values are stored such that the reticle is identified by XXYY, and the structure within a reticle is 
identified with xxyy. Substrate characteristics, which are taken prior to the process step which 
defines the XXYY reticle location, are reported in millimeters. Computer routines have been 
written and verified that reference the millimeter data to the reticle locations. The measured 
characteristic is then assigned the respective reticle XXYYxxyy. This method of test structure 
identification allows for the tracking of parameter values for a specific device from one process 
stage to the next. This is imperative to MLPNN model development. The characteristics for a 
specific device must be tracked from one stage to the next to maintain the input-output relationships 
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Fab Stage Characteristic Name Symbol 

(OESA/B) 

fab Stage Characteristic Name Symbol 

S 2-OpticaI Scattering 
Neutral deep donor dens. 

C Drain-source sat. current (C-Idss) 

S (EL2) C Drain-source resistance C-Rds) 

S Substrate resistivity (Rho) C Contact resistance (Re) 

s. Substrate Hall mobility (MuH) C Contact metal sheet res. (C-Rsh) 

s Substrate Carrier Cone. (Ns) c Ohmic metal layer width (O-W) 

s Doping Concentration (Nd) c Ohmic metal sheet res. (O-Rsh) 

S Implant Activation (ETA) R Drain-source sat. current (R-Idss) 

s Drift Mobility (Vg=0) (MuO) R Drain-source resistance (R-Rds) 

s Drift Mobility (Vg=-1.5) (Mul) F Drain-source sat. current (F-Idss) 

G Drain-source sat. current (G-Idss) F Drain-source resistance (F-Rds) 

0 Drain-source resistance (G-Rds) F Gate-source resistance (F-Rgs) 

G Gate-source resistance- (G-Rgs) F Source resistance (F-Rs) 

G Source resistance (G-Rs) F Drain-gate resistance (F-Rdg) 

G Drain-sate resistance (G-Rdg) F Drain resistance (F-Rd) 

G Drain resistance (G-Rd) F Pinch-off voltage (F-Vpo) 

G Pinch-off voltage (G-Vpo) F Transconductance (F-Gm) 

G Transconductancc (G-Gm) G Gate metal width (O-W) 

G Gate metal sheet res. (G-Rsh) 

S- Substrate/Active. Layer C - Ohmic/Post-Contact R - Post-Recess 
G - Post-Gate F - Final DC 

TABLE 1.   Material and MESFET device Characteristics modeled using neural 
networks. Characteristics for each respective fabrication stage serve 
as input-output pairs for model development and verification. 

necessary for creating, training and modeling data sets. Also, the measured parameters location 
within a wafer are maintained for the purpose of wafer mapping. 

III. DATA SELECTION and NETWORK ARCHITECTURE 

One of the principle objectives of this work is to model the effect that material and process 
variations have on the performance characteristics of the active devices used in integrated circuits. 
The active device is typically where the effects of these variations become most evident and is a 
major contributor to yield loss. Therefore, as mentioned earlier, the MESFET is at the center of 
this modeling effort. For network training purposes, a density of six data vectors per reticle was 
chosen. Alf measured parameters within a reticle are referenced to six specific XXYYxxyy 
MESFET locations- Training vectors are formed by assigning each of the non-MESFET 
characteristics to the nearest-neighbor MESFET. Training files were created for each of the 
fabrication process stages identified previously. 

A training file consisting of data from each reticle would contain over 1200 training 
vootoro. It ic deeirable to develop training filee of a manageable iiie to train the neural network 
models in an efficient manner. Yet, one desires to have training files which statistically represent 
the variations across a wafer. Through the examination of the nature in which device variations 
occur [1,2], it was determined that a horizontal slice of reticles across the wafer would provide 
enough data to statistically characterize the wafer variations, yet provide a manageable data set. 

Hence, a horizontal slice of 14 reticles across the middle of the wafpx was r.hnsrn for 
training purposes. This piuviduJ 34 Luiuiug JuU veOOii. Tht dAtA WAJ analysed and IS data 
vectors, whose measurements indicated non-functional MESFETs (i.e. Idss=0, etc.), were 
discarded. Of the remaining 69 data sets, 50 were used to train the neural networks and 19 were 
reserved to test the neural networks. For testing the inverse models, data vectors of the wafer's 
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entire population of functional MFSFFTs. a total of 678, were used ro perform whole wafer 
characterization of certain critical parameters. Each of the neural network models developed in this 
work are evaluated by comparing the actual values of these parameters to the modeled values. 

The neural network architecture used in this modeling effort is the multilayer perceptron 
neural network. The MLPNN learns the similarities or patterns among sets of input-output data. 
The network is trained in the supervised mode using the generalized delta learning rule. It has one 
hidden layer, and uses continuous perceptions. "Die algorithm used to implement the MLPNN was 
written in-house and is given in [141. The size of the hidden layer in each MLPNN was 
determined experimentally by varying the number of hidden neurons and selecting the number 
which resulted in the lowest training error over a number of training sessions while maintaining 
adequate generalization. Each model took 20-40 minutes to train on a 100 Mhz computer. Once 
trained, the recall of the modeled parameters from the network is almost instantaneous. 

IV. YIELD ESTIMATION 

Accurate and computationally efficient methods for estimating integrated circuit (IC) 
parametric yield have been under development for years. In general, parametric yieM is 
formulated by determining if the measured values of certain critical performance parameters fall 
within a predetermined tolerance range about the target value for that parameter. During IC 
fabrication, parametric test are performed to determine discrepancies between the actual 
performance and the desired performance. This can involve the screening of final, or F-stage, DC 
device parameters such as: saturated drain current, F-Idss; transconductance, F-Gm; and pinch-off 
voltage, F-Vpo. Accurate estimation of parametric yield during the manufacturing process relies 
on the ability to predict the effect of material and process variations on device parameters. The 
MLPNN models accomplish this task. 

A. MLPNN Models 

Three models of the F-stage DC characteristics were developed, refer to Figure 1, each 
model having input which represents a different stage of the fabrication process. Specifically the 
three models are denoted as: !) S->F, which has 10 measurements used to characterize the 
substrate and active layer materials as input; 2) CR«>F, which uses 8 measurements taken at the 
post-contact and post-recess stage; and 3) G->F, which uses 8 measurements made at post-gate 
as input. The characteristics for each respective stage are given in Table 1. The number of hidden 
layer perceptions for each model was determined experimentally as 22. 

The Ihice MLPNN models, aie used tu piedjct the values of F-Iil*>, F-Gm, and F-Vpü, ii 
well as the other F-stage characteristics, for each of the i9 MESFETs in the test set. The yield is 
estimated by comparing these modeled values to the tolerance ranges for the respective 
characteristic. If the value falls within the range then it is considered to have passed, if not it fails. 
The estimated percent yield is then calculated and compared to the actual yield. 

B. Results 

Upon completion of training, the developed models were tested. Each test vector was used 
as input to the respective MLPNN model. The resulting outputs represent the modeled device 
characteristics at the final fabrication stage. For each MLPNN: 1) the modeled values have been 
compared to the actual measurement and the relative error calculated, and 2) the parametric yield 
has been estimated using the modeled values and have been compared to the actual parametric 
yield. 

Figure 2 shows the average relative error between the MLPNN modeled values and the 
actual measurements for all the final DC parameters for each MLPNN. Each model perform a 
rather accurate computation of the device characteristics. As discovered in [15], the best model is 



INPUT 

Substrate/active, 
measurements 

Post-contact 
post-recess 
measurements 

S->F 
MLPNN 
MODEL 

OUTPUT 

F-!dSS 

CR->F 
MLPNN 
MODEL 

Post-gate 
measurements 

G->F 
MLPNN 
MODEL 

F-Rds 

F-Rqs 

F-Rs 

F-Rdg 

F-Rd 

F-Vpo 

F-Gm 

Figure 1. The three different MLPNN models developed. Each model 
independently predicts the output parameters. 

the one which has the post-gate (G) data as input (i.e. G->F). The results obtained here, using the- 
G-stage data exclusively as input, are better than those reported in [15], with errors at or Jess than 
3% for all device characteristics. 

Figure 3a-c, are bar charts of the actual yield and estimated yield using each MLPNN 
model's predicted values of F-Idss. F-Gm, and F-Vpo. The yield is calculated for three tolerance 
ranges; +/- 5% (Fig. 3a), +/- 10% (Fig. 3b), and +/- 20% (Fig. 3c). The tolerance ranges are 
computed as +/- 5%, 10%, and 20% of the parameters target values. The target value for each 
parameter is: Idss= 227 mA, Gm= 208 mS, and Vpo= -1.54 V. 

As can be seen from Figure 3, the MLPNN computed values resulted in yield estimates 
which are very accurate. As suggested by the relative errors, the yield estimates were better for the 
MLPNN models developed using characteristics measured at the later stages of the fabrication 
process. The accuracy went from very good for the S->F MLPNN to excellent for the CR->F and 
G->F MLPNNs. Even for the tight tolerance range of 5%, the yield estimates are very credible. 

IV. INVERSE MLPNN MODELS 

Developing methods to provide affordable and reproducible high frequency products is a 
major objective of the GaAs 1C industry. Fundamental to meeting this objective is to increase 
circuit yields by developing uniform fabrication technologies. This requires the analysis and 
statistical characterization of critical process and device characteristics across many wafers. 
Ideally, this analysis would utilize whole wafer high density material, process, and device 
characteristics measured at critical stages of the fabrication process. A large number of measured 
characteristics, taken across many wafers, is needed to provide a statistical database for process 
and device characterization. The amount of testing required to obtain the data to implement the 
ideal approach is prohibitive. A dominant factor in the high cost associated with IC product 
development is testing requirements. Typically, whole wafer testing is only performed after 
fabrication is complete. 
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Figure 3. Comparision of actual and MLPNN computed yield a) 5% b) 10% c) 20% Tolerance. 

The inverse modeling approach described here presents a methodology in which whole 
wafer in-process characterization is possible with minimal in-process testing. This reduced testing 
makes it affordable to analyze the process and device variations over many wafers. Thus, allowing 
one to examine the most crucial variations and the effect they have on IC performance. 

The feed-forward neural network has been previously applied in such areas as microwave 
circuit analysis and optimization [16], microsuip circuit design [17], and device characterization for 
VLSI simulation [18]. More recently, the MLPNN has demonstrated, with good accuracy, the 
ability to model GaAs MESFET process and device characteristics in the forward direction [19]. 
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A. MLPNN Models 

Ali four critical stages of the GaAs MESFET IC fabrication process were selected for 
inverse modeling. That is. substrate/active layer (S), post-contact (C), post-recess (R); and post- 
fflr, (ft) Figurr, 4 illnsfraTftf Ihn four riifffirfinf pmfifiss siagf, mortals dr.Yr.lnpnrl Fafih mnftal has 
as input'the same 8 F-stage characteristics listed in Table 1 and independently predicts the output 
characteristics of each respective fabrication stage. Due LO the absence of whole wafer test data for 
some substrate/active layer characteristics and to improve mode] efficiency, the number of output 
characteristics for some of the inverse MLPNN models were slightly reduced from those listed in 
Table 1. Therefore, the symbol of the specific characteristics modeled for each stage are provided 
below. Refer to Table 1, for the names of the characteristics the symbols represent. 

The four process stage models are denoted as: 1) F->S, which consists of 7 outputs. Best 
results during training were obtained using a hidden layer consisting of 17 perceptrons. The 
nmnnrs nfrhfT F->S sraw mnrlp.l are, rhp. rharanmristirs nf rhr, harr, snhsrratr, and fhr, inn-imptomp-rl 
active laver: Nd, RC'EL^-ETA, RtiorMuO, MuH; 2) F->C, consists of 4 outputs. Best 
results during training were obtained using a hidden layer consisting of 12 perceptions. The 
outputs of the F->C stage model are the post-contact characteristics: C-Idss, C-Rds, C-Rsh; 0- 
Rsh- 3) F->R, consists of 2 outputs. Best results during training were obtained using a hidden 
lay-pr rnnsistin^ nf 8 niwT.prtrms Thr, outputs nf the, F->R stagf; mnrifsl am rhfi pnst-rp,rf„s,s 
characteristics: ""R-Mss, R-Rds; 4) F->G, consists of 9 outputs. Best results during training were 
obtained using a hidden layer of 19 perceptrons. The outputs of the F->G stage model are the 
post-gate characteristic: G-Idss, G-Rds, G-Vpo, G-Rd7 G-Rgs, G-Gm, G-Rs, G-Rdg, G-Rsh. 

B. Results 

Table 2, lists the statistical mean and standard deviation for the modeled values and the 
actual measurements for each characteristic modeled using the F->C, F->R, and F->G MLPNNs. 

INPUT OUTPUT 

F-ldss 
F->S 

MLPNN 
MODEL 

^_ w.. Substrate/activi 
F-Rds Characteristics 

F-Rgs 
F->C 

MLPNN 
MODEL 

Post-contact 

F-Rs 
m   Characteristics 

F-Rdg F->R 
MLPNN 
MODEL 

^ Post-recess 

F-Rd 
Characteristics 

F-Vpo 
MLPNN 
MODEL 

w_ Post-aate 

F-Gm 
Characteristics 

Figure 4. The four inverse MLPNN models developed. 



mm. 

The statistics were taken over the 678 test sets. The statistics of the MLPNN predicted values are in 
excellent azreement with the actual statistics. Figure 5a is the wafer map of the measured G-ldss 
values, while Figure 5b is the wafer map of the MLPNN modeled G-Idss. As can be seen the 
giMi'al äpätiäl lelätiüilShip öf the eliAiactemtiu iiciuss the wafer axe recreated. Figure 6a-b, shows 
The same relationship for the R-Idss characteristic. 

Table 3, lists the average relative error.between the F->S MLPNN modeled values and the 
actual mou'Jirroroonu;. The error is slightly higher for those characteristics than those of the athsr 
stage models. That is to be expected considering the amount of processing the wafer is subjected to 
after these measurements are made. The final DC measurements seem to correlate best with the 
mobility. Whole wafer comparisons are not available for the S-stage characteristics because of the 
destructive nature of the test required for characterization. The results, while still acceptable, could 
possibly be better if the sites used for training were selected in a more optimal fashion. 

Characteristic 1 Mean 1                 STD. DEV. 

Actual 1 Modeled 1        Actual 1   Modeled 

G Idss 221 228 36.2 36.7 
G-Rds 2.83 2.78 0.267 0.247 
G-Rgs 3.79 3.74 0.152 0.120 
G-Rs 1.10 1.08 0.058 0.048 
G-Rdg 3.47 3.43 0.191 0.130 
G-Rd 0.798 0.752 0.079 0.056 
G-Vpo -1.43 -1.49 0.217 0.224 
G-Gm 204 208 7.37 7.29 
G-Rsh 0.059 0.057 0.0024 0.0023 
R-Idss 638 643 34.3 37.8 
R-Rds 2.35 2.43 0.129 0.113 
C-Idss 925 918 28.2 36.5 
C-Rds L63E4 1.63E4 751 780 
C-Rsh 0.349 0.336 0.019 0.015 

TABLE 2. Statistics for the actual and modeled values. 

EL2     Rho    Ns      Muh    Nd      ETA    MuO 

5.9%   4.6%   4.2%   1.4%   5.9%   5.8%   1.3% 

TABLE 3. Average relative error for F->S characteristics 

V.   CONCLUSIONS 

This paper presents a new methodology for modeling of semiconductor process/device 
characteristics, in both the forward and inverse direction. The modeling technique discribed 
utilizes artificial neuro-computing technology. Specifically, the multilayer perception neural 
network (MLPNN) is employed for model development. 

In the forward direction, measurements of characteristics taken at previous fabrication 
processing stages arc used as input to a MLPNN and the next stage output values are modeled. 
For inverse modeling, whole wafer measurements of final DC device characteristics are used as 
input to a MLPNN and in-process characteristic values are modeled. This approach ehminatcs the 
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Figure 5a -Wafer Map of measured post-gate Tdss. 
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Figure 5b - Wafer Map of modeled post-gate Idss. 
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fig. 6a -Wafer Map of measured post-recess Idss. Fig. 6b - Wafer Map of modeled post-recess Idss. 

need to statistically describe parametric variations across a wafer. Training is accomplished by 
using the actual measurements as input and output pairs. The MLPNN inherently encodes the 
statistics of these variations. The data presented show the approach can provide accurate results. 

It is shown that the MLPNN mode! is a useful tool for estimating the parametric yield 
during the manufacturing process. There is excellent agreement between the actual yield and the 
estimated yield nsing the MT PNN modelpri vnlnps Also, we hnvp Hemonstratpd the MT PNNs 
ability to provide whole wafer statistics and wafer maps of important characteristics at critical 
stages of the fabrication process. This is accomplished by utilizing just a small amount of in- 
process testing. 

The approach presented is technology independent and could be extended to other 
fabrication or production processes. 
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ABSTRACT 
A novel, low cost, approach for modeling in- 

process material and device characteristics is 
described. Multilayer perceptron neural networks 
(MLPNN) are trained using error back 
propagation to model these characteristics at 
critical stages of the fabrication process. The 
modeled characteristics are used for whole wafer 
mapping and statistical characterization. We 
demonstrate, with good results, that the MLPNN 
models facilitate whole wafer analysis of in- 
process material and device variations with 
minimal in-process testing. 

INTRODUCTION 
Integrated-circuit (IC) technologies are 

expected to produce uniform device properties 
over a large wafer area. This uniformity is 
difficult to achieve for GaAs IC technology 
because of material and processing deviations. 
From wafer to wafer, as well as within a wafer, 
there are large variations of material and process 
properties which strongly influence important 
factors in MMIC performance [1,2]. It is 
essential that these variations are understood and 
properly modeled. 

Developing methods to provide affordable and 
reproducible MMIC products is a major objective 
of the GaAs IC industry. Fundamental to 
meeting this objective is to increase circuit yields 
by developing uniform fabrication technologies. 
This requires the analysis and statistical 
characterization of critical process and device 
characteristics across many wafers. 

Ideally, the process analysis would utilize 
whole wafer high density material, process, and 
device characteristics measured at critical stages 
of the fabrication process. A large number of 
measured characteristics, taken across many 
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wafers, is needed to provide a statistical database 
for process and device characterization [2,3]. The 
amount of testing required to obtain the data to 
implement the ideal approach is prohibitive. A 
dominant factor in the high cost associated with 
MMIC product development is testing 
requirements. Typically, whole wafer testing is 
only performed after fabrication is complete. 

The inverse modeling approach described in 
this paper presents a methodology in which 
whole wafer in-process characterization is 
possible with minimal in-process testing. This 
reduced testing makes it affordable to analyze the 
process and device variations over many wafers. 
Thus, allowing one to examine the most crucial 
variations and the effect they have on MMIC 
performance. 

The feed-forward neural network has been 
previously applied in such areas as microwave 
circuit analysis and optimization [4], microstrip 
circuit design [5], and device characterization for 
VLSI simulation [6]. More recently, the 
MLPNN has demonstrated, with good accuracy, 
to ability to model GaAs MESFET process and 
device characteristics in the forward direction [7]. 

MLPNN    MODELS 
The neural network architecture used in this 

modeling effort is the multilayer perceptron 
neural network. The MLPNN learns the 
similarities or patterns among sets of input- 
output data. The modeled parameters are extracted 
empirically. In theory, neural networks have 
been shown to model any degree of non linearity 
[4]. The cost associated with implementing a 
neural network is low. Developing a neural 
network model is unlike software development, 
the network is trained, not programmed. 

The MLPNN in this work is trained in the 
supervised mode using the generalized delta 
learning rule. It has one hidden layer, and uses 
continuous perceptions. The algorithm used to 



implement the MLPNN was written in-house and 
is given in [8]. The size of the hidden layer in 
each MLPNN was determined experimentally by 
varying the number of hidden neurons and 
selecting the number which resulted in the lowest 
training error over a number of training sessions. 
Each model took 20-40 minutes to train on a 100 
Mhz computer. Once trained , the recall of the 
modeled parameters from the network is almost 
instantaneous. 

Four critical stages of the GaAs IC fabrication 
process    were   selected   for   modeling: 
Substrate/active layer (S), post-contact (C), post- 
gate-recess (R), post-gate metal (G). The letter 
preceding the characteristics listed below applies 
to the fabrication stages as denoted above. Each 
model uses as  input 8 final DC device 
characteristics. They, are: 
•F-Idss, drain-source sat current, (mA/mm) 
•F-Rdg, drain-gate resistance, (ohm-mm) 
•F-Rds, drain-source resistance, (ohm-mm) 
•F-Rd,  drain resistance, (ohm-mm) 
•F-Rgs, gate-source resistance, (ohm-mm) 
•F-Vpo, pinch-off voltage, (V) 
•F-Rs,  source resistance, (ohm-mm) 
•F-Gm, transconductance, (mS/mm) 

Fig.l illustrates the four different process stage 
models developed. The network model for the S 
process stage, denoted as F->S, consists of 7 
outputs. Best results during training were obtained 
using a hidden layer consisting of 17 neurons. The 
outputs of the    F->S   stage model  are  the 
characteristics of the bare substrate and the ion- 
implanted active layer 
•S-Nd, doping concentration, (cm*) 
•S-Ns, substrate carrier concentration, (cnv*) 
•S-EL2, neut deep donor density, (cm2) 
•S-ETA, implant activation, (%) 
•S-Rho, substrate resistivity, (ohm-mm) 
•S-Mu, drift mobility (Vg=0), (cm2/V-sec) 
•S-MuH, substrate Hall mobility, (cm2/V-sec) 

The network model for the C process stage, 
denoted as F->C, consists of 4 outputs. Best results 
during training were obtained using a bidden layer 
consisting of 12 neurons. The outputs of the F->C 
stage model are the post-contact characteristics: 
•C-Idss  «C-Rds 
•C-C_Rsh, Contact metal sheet resistance 
•C-0_Rsh, Ohmic metal sheet resistance 

The network model for the R process stage, 
denoted as F->R, consists of 2 outputs. Best 
results during training were obtained using a 
hidden layer consisting of 8 hidden neurons. The 
outputs of the F->C stage model are the post- 
recess characteristics;    «R-Idss    «R-Rds 

The network model for the G process stage, 
denoted as F->G, consists of 9 outputs. Best 
results during training were obtained using a 

hidden layer consisting of 19 hidden neurons. The 
outputs of the F->G stage model are the post- 
gate characteristic: 
•G-Idss  «G-Rds  «G-Vpo «G-Rd 
•G-Rgs «G-Gm  «G-Rs    «G-Rdg 
•G-Rsh, Gate metal sheet resistance 

DATA SELECTION 
The data used in this work originated from 

measurements taken on a 4x4.5 mm high- 
density test structure reticle repeated some 200 
times per wafer. The fabrication process used an 
ion-implanted active layer and a recess-etched gate 
with a nominal length of 0.5 jxm. Process and 
device characteristics were measured at a 
sufficient density to fully characterize variations 
across the wafer. The reticles contain an array of 
0.5x200 um MESFET, Van der Pauw patterns, 
transmission line models, and standard process 
control monitor structures. Whole wafer testing 
was conducted on the substrates and during wafer 
processing at four critical steps: Ohmic or Post- 
contact, Post-recess, Post-gate, and Final. The 
majority of the characteristics have been 
measured on the 0.5x200 um MESFET. This 
test structure device is at the center of this 
modeling effort. The parameter values are stored 
such that the reticle is identified by XXYY, and 
the structure within a reticle is identified with 
xxyy. This method of test structure 
identification allows for the tracking of 
parametric values for a specific device from one 
process stage to the next. This is imperative to 
MLPNN model development. The characteristics 
for a specific device must be tracked from one 
stage to the next to maintain the input-output 
relationships necessary for creating training and 
modeling data sets. Also, measured parameters 
location within a wafer are maintained for wafer 
mapping. 

A horizontal slice of 14 reticles across the 
middle of the wafer was chosen for training 
purposes. These reticles where chosen for two 
reasons; 1) due to the nature in which device 
variations occur [1], 2) they contained the only 
available properly formatted substrate and active 
layer characteristics. This provided 84 data sets. 
The data was screened for non-functional 
MESFETs (i.e. Idss=0, etc.), which were 
excluded from training. Of the remaining 69 data 
sets, 50 were used to train the MLPNNs and 19 
were reserved to test the MLPNN performance at 
modeling the substrate and active layer 
characteristics. After training the final DC 
characteristics of the wafer's functional 
MESFETs, total of 678, were used as input to 
the MLPNNs and whole wafer characterization of 
certain critical parameters was performed. To 



demonstrate the MLPNN performance the actual 
values of these parameters are compared to the 
MLPNN modeled values. 

RESULTS 
Upon completion of training, each MLPNN 

model was tested. First, each of the 19 test sets 
(the ones not used in training) were input to the 
F->S MLPNN model. The resulting outputs 
represent the modeled substrate and active layer 
characteristics. The average relative error between 
the MLPNN modeled values and the actual 
measurement are computed. Secondly, the 678 
test sets where input to the three remaining 
MLPNN models F->C, F->R, and F->G. The 
mean and standard deviation is computed for the 
MLPNN modeled values and the actual 
measurements. Whole wafer mapping of certain 
critical characteristics is provided for comparison 
purposes. 
F->C, F->R, and F->G Stage MLPNNs 

Table 1, list the statistical mean and standard 
deviation for the MLPNN modeled values and the 
actual measurement for each characteristic. The 
statistics were taken over the 678 test sets. Each 
model performs a rather accurate computation of 
each characteristic. The MLPNN modeled values 
provide the process engineer with a very good 
indication of each characteristics actual statistics. 
Fig. 2a is the wafer map of the actual G-stage 
Idss and Fig. 2b, is the wafer map of the 
MLPNN modeled G-Idss. As can be seen the 
general spatial relationship of the characteristic 
across the wafer are recreated. Fig. 3a-b, shows 
the same relationship for the R-Idss. Whole wafer 
mapping, with similar results, is available for 
each of the characteristics listed in Table 1. 
F->S  Stage MLPNN 

Table 2, list the substrate/active layer 
characteristics and the associated average relative 
error taken over the 19 test sets.. The error is 
slightly higher for these characteristics than those 
of the other stage models. That is to be expected 
considering the amount of processing the wafer is 
subjected to after these measurements are made. 

The final DC measurements seem to correlate 
best with the mobility. Again, whole wafer 
comparisons are not available for the S stage 
characteristics. The results, while still acceptable, 
could possibly be better if the sites used for 
training were selected in a more optimal fashion. 

CONCLUSIONS 
This paper presents a new low cost method for 

modeling of semiconductor material and device 
characteristics using multilayer perceptron neural 
networks. Whole wafer measurements of final 

DC device characteristics are used as input to a 
MLPNN and in-process characteristic values are 
modeled. In-process measurements representing 
only 5% of whole wafer testing are used to 

TABLE 1. Stats, for actual and modeled values. 

CHARS MEAN STD. DEV. 

lActual I Modeled 1 Actual I Modeled 

G Idss 221 228 36.2 36.7 
G-Rds 2.83 2.78 0.267 0.247 
G-Rgs 3.79 3.74 0.152 0.120 
G-Rs 1.10 1.08 0.058 0.048 
G-Rdg 3.47 3.43 0.191 0.130 
G-Rd 0.798 0.752 0.079 0.056 
G-Vpo -1.43 -1.49 0.217 0.224 
G-Gm 204 208 7.37 7.29 
Rsh-G 0.059 0.057 0.0024 0.0023 
R-Idss 638 643 34.3 37.8 
R-Rds 2.35 2.43 0.129 0.113 
C-Idss 925 918 28.2 36.5 
C-Rds 1.79 1.77 0.074 0.068 
O Rsh 1.63E4 1.63E4 751 780 
C Rsh 0.349 0.336 0.019 0.015 

TABLE 2. Avg. rel. error for F->S characteristics 

EL2     Rho     ns    Muh   Ndp    ACT%   Mu 

5.9%   4.6% 4.2% 1.4%   5.9%   5.8%    1.3% 

develop the MLPNN model. We have 
demonstrated the MLPNNs ability to provide 
whole wafer statistics and wafer maps of 
important characteristics at critical stages of the 
fabrication process. Further more this is 
accomplished by utilizing just a small amount of 
in-process testing. 
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Figure 1. - The four different MLPNN models. 
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Figure 2a -Wafer Map of measured post-gate Idss. Fig. 3b - Wafer Map of modeled post-recess Idss. 
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Abstract 

A unique and accurate approach for modeling 
semiconductor device characteristics and estimating 
IC parametric yield is described. Multilayer 
perceptron neural networks (MLPNN) are trained 
using error back propagation to model DC device 
characteristics measured at the final fabrication stage. 
Measurements of material and/or device 
characteristics taken at earlier fabrication stages are 
used to develop neural network models of the final 
DC parameters. A very good agreement has been 
found between the actual measurements and the 
MLPNN modeled parameters, and the resulting yield 
estimations are in excellent agreement with the actual 
yield. 

Introduction 

Accurate and computationally efficient methods 
for performing semiconductor device characterization 
and for estimating integrated circuit parametric yield 
have been under development for years [1]. In 
general, parametric yield is computed by deterniining 
if a key device parameter's measured value falls 
within a certain tolerance range. IC technologies are 
expected to produce uniform device properties over 
a large wafer area. This uniformity is especially 
difficult to achieve for GaAs IC technology because 
of material and processing deviations. From wafer to 
wafer, as well as within a wafer, there are large 
variations of material and process properties which 
strongly influence important factors in final 
device/circuit performance [2]. 

Traditional IC process/device modeling 
approaches, whether analytical or empirical, do not 
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utilize the parametric values specific to a certain 
device's location on a wafer. Variations of 
parametric values are typically represented 
statistically. The parametric values are actually 
treated as random variables described by joint 
probability density functions [1,3]. Once the 
statistical distribution is determined, the effect of the 
material/process variation on the device/circuit's 
performance is analyzed by performing simulations- 
using Monte Carlo techniques [1,4,5]. 

As shown in [2,6,7], many of these parametric 
variations do not occur in a random manner across a 
wafer but in a radial and axial pattern. The modeling 
approach described in this paper presents a 
methodology in which a specific device's 
characteristics can be modeled based on its physical 
location within a wafer. At the start of and at 
intermediate stages of the fabrication process material 
and device measurements are taken on or at the 
location of a specific MESFET. These measurements 
are used to model those specific MESFET 
characteristics measured at the final fabrication stage. 
Variations are represented in the characteristics 
values of each individual device. 

Each model is developed through the supervised 
learning of an MLPNN. The approximating neural 
network progressively combines the device variation 
and its statistics into the fitting relationship [8]. The 
MLPNNs have demonstrated the ability to model 
complex processes and device parameters with good 
accuracy [9], but using these models for yield 
estimation is still a rather unexplored subject. 

Device Characterization/Data Selection 

IC manufacturing consists of many 
distinguishable fabrication stages. A large and 
representative number of measurements of material 
and device characteristics is needed to provide a 



statistical database for neural network modeling of IC 
devices. ' 

The data used in this work was taken across an 
entire wafer at a sufficient density to fully 
characterize the GaAs device variations across the 
wafer. The     measurement     data     used     for 
characterization originated from a 4x4.5 mm high 
density test structure reticle repeated some 200 times 
per wafer. Whole wafer testing was conducted on 
the substrates (S) and during wafer processing at four 
critical steps: Post-contact and Post-recess (CR), 
Post-gate (G), and Final. The majority of the 
characteristics have been measured on the 0.5x200 
micron MESFET. This test structure device is at the 
center of this modeling effort. The data was 
prepared as described in detail in [9]. 

Due to the nature of device variations [2], it was 
determined that a horizontal slice of reticles across 
the wafer would provide enough data to characterize 
the wafer variations, yet provide a manageable data 
set. A horizontal slice of 14 reticles across the 
middle of the wafer was chosen. This provided 84 
training vectors. The data was then analyzed and 15 
training vectors, whose measurements indicated non- 
functional MESFETs, i.e. Idss=0, were discarded. 
Of the remaining 69 vectors, 50 were used to train 
the network models, and 19 were used to test the 
models. The training vectors were shuffled in a 
random manner before training to create test files. 

Network Models 

The MLPNN network, with continuous 
perceptions and one hidden layer, has been trained in 
the supervised mode using the generalized delta 
learning rule. The algorithm used to implement and 
train the MLPNN is given in [10]. The number of 
hidden layer perceptrons for each model was 
determined experimentally as 22. This was 
accomplished by varying the number of hidden 
neurons and selecting the number which resulted in 
the lowest training error over a number of training 
sessions. 

Three models of the final DC characteristics were 
developed, each model having input which represents 
a different stage of the fabrication process. The final 
DC device characteristics modeled are: 
•F drain-source saturation current (Idss) 
•F drain-source resistance (Rds) 
•F gate-source resistance (Rgs) 
•Source resistance (Rs) 
•Drain-gate resistance (Rdg) 
•Drain resistance (Rd) 

•Pinch-off voltage (Vpo) 
•Transconductance (Gm) 

Fig. 1 illustrates the three different stage models 
developed.       The   S->F   stage   model   uses   10 
measurements to characterize the substrate and active 
layer materials as input.   These are: 
•Two Optical Scattering (OBS) 
•Neut deep donor density (EL2) 
•Substrate resistivity (Rho) 
•Substrate Hall mobility (MuH) 
•Substrate Carrier Cone. (ns) 
•Doping Concentration (Nd) 
•Implant Activation (ETA) 
•Drift Mobility (Vg=0) (MuO) 
•Drift Mobility (Vg-1.5) (Mul) 

The CR->F stage model uses 8 measurements 
taken at the post-contact and post-recess stage as 
input.  These are: 
•P-C drain-source saturation current (C-Idss) 
•P-C drain-source resistance (C-Rds) 
•P-R drain-source saturation current (R-Ids) 
•P-R drain-source resistance (R-Rds) 
•Contact resistance (Re) 
•Contact metal sheet resistance        (C-Rsh) 
•Ohmic metal layer width (O-W) 
•Ohmic metal sheet resistance (O-Rsh) 

The G->F stage model uses 8 measurements 
made at post-gate as input.  These are: 
•P-G drain-source saturation current (G-Idss) 
•P-G drain-source resistance (G-Rds) 
•Gate-source resistance (G-Rgs) 
•Source resistance (G-Rs) 
•Drain resistance (G-Rd) 
•Pinch-off voltage (G-Vpo) 
•Transconductance (G-Gm) 
•Drain-gate resistance (G-Rdg) 

The development of the three separate models 
allow for device characterization and parametric yield 
estimation at these three distinct stages of the IC 
manufacturing process. 

Yield Estimation 

Parametric tests are performed during IC 
fabrication to determine discrepancies between the 
actual performance and the desired performance. 
This can involve screening of key DC device 
parameters such as: saturated drain current, Idss; 
transconductance, Gm; and pinch-off voltage, Vpo 
[1]. Accurate estimation of parametric yield during 
the manufacturing process relies on the ability to 
predict the effect of process variations on device 
parameters.    The MLPNN models accomplish this 
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task. 
The three MLPNN models extrapolate the values 

of Idss, Gm, and Vpo, as well as the other 
characteristics. The yield is estimated by comparing 
the modeled values to the tolerance ranges for the 
respective characteristic. If the value falls within the 
range, then the device is considered to have passed. 
The estimated percent yield is then calculated and 
compared to the actual yield. 

Results 

Upon completion of training, the developed stage 

models were tested. Each test vector is used as input 
to the respective MLPNN model. The resulting 
output represents the modeled device characteristics 
at the final fabrication stage. For each MLPNN: 1) 
the modeled values have been compared to the actual 
measurement and the relative error calculated, and 2) 
the parametric yield has been estimated using the 
modeled values and have been compared to the actual 
parametric yield. 

Fig. 2 shows the average relative error between 
the MLPNN modeled values and the actual 
measurements of all the final DC parameters for each 
MLPNN. Each model performs a rather accurate 
computation of the device characteristics. As 
discovered in [9], the best model is the one which has 
the post-gate (G) data as input (i.e. G->F). The 
results obtained here using the G-stage data 
exclusively as input are better than those reported in 
[9] with errors at or less than 3% for all device 
characteristics. 

Fig. 3a-c are bar charts of the actual yield and 
estimated yield calculated using each of the MLPNN 
model's predicted values of Idss, Gm, and Vpo. The 
pattern in which the bar is filled represents the source 
of the values used for the yield calculation. When a 
zero (0) appears in the chart, this is to indicate zero 
yield for that parameter. The yield is calculated for 
three tolerance ranges; +1-5% (Fig. 3a), +/-10% 
(Fig. 3b), and +/-20% (Fig. 3c). The tolerance 
ranges are computed as 5%, 10%, and 20% of 
the parameter's target value. The target value for 
each parameter is: Idss=227 mA, Gm=208 mS, and 
Vpo=-1.54 V. 

As can be seen from Fig. 3, the MLPNN 
computed values resulted in yield estimates which are 
very accurate. As suggested by the relative errors, 
the yield estimates were better for the MLPNN 
models developed using characteristics measured at 
later stages of the fabrication process. The accuracy 
went from very good for the S->F MLPNN to 

excellent  for the  CR->F  and  G->F MLPNNs 
Even for the tight tolerance range of 5%, the yield 
estimates are very credible. 

Conclusions 

This paper presents both a new methodology and 
new results for modeling of semiconductor device 
characteristics and performing parametric yield 
estimation using multilayer perceptron networks. 
Measurements of material and device characteristics 
taken at early fabrication stages are used as input to 
a MLPNN and final DC device characteristics are 
modeled. This approach eliminates the need to 
statistically describe parametric variations across a 
wafer. Training is accomplished using the actual 
measurements as input and output pairs. The trained 
MLPNN inherently encodes the statistics of these 
variations. The data presented show that the 
approach can provide accurate results. The authors 
acknowledge that the number of MLPNN test cases 
may not be fully sufficient and are currently 
extending this work to full wafer evaluation. 

It is also shown that the MLPNN model is a 
useful tool for estimating the parametric yield during 
the manufacturing process. There is an excellent 
agreement between the actual yield and the estimated 
yield using the MLPNN computed values. Moreover, 
the approach presented is technology-independent and 
could be extended to other fabrication or production 
processes. 
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ABSTRACT 

Multilayer feedforward networks are often used for modeling 
complex relationships between the data sets. Deleting unim- 
portant data components in the training sets could lead to 
smaller networks and reduced-size data vectors. This can be 
achieved by analyzing the total disturbance of network out- 
puts due to perturbed inputs. The search for redundant data 
components is performed for networks with continuous out- 
puts and is based on the concept in sensitivity of linearized 
neural networks. The formalized criteria and algorithm for 
pruning data vectors are formulated and illustrated with ex- 
amples. 

INTRODUCTION 

Neural networks are often used to model complex functional 
relationships between sets of experimental data. This is par- 
ticularly useful when an analytical model of a process either 
does not exist or is not known, but when sufficient data is 
available for embedding relationships existing between two 
or more data bases into a neural network model. Representa- 
tive data can be used in such a case to perform supervised 
training of a suitable neurocomputing architecture. Multilay- 
er feedforward neural networks (MFNN) have been found es- 
pecially efficient for this purpose [1,2]. The minimization of 
redundancy in the training data is, however, an important is- 
sue and rather rarely addressed in the technical literature. 
MFNN considered here are trained using the popular error 
backpropagation technique in order to perform the feedfor- 
ward process identification [3]. 

Let us consider a MFNN with a single hidden layer. The net- 
work performs a nonlinear and constrained mapping o=IT(x), 
where o (Kxl), and x (Ixl) are output and input vectors, re- 
spectively. It is assumed that certain inputs bear none, or little, 
statistical or deterministic relationships to outputs and input 
vectors could therefore be compressed. The objective of this 
study is to reduce the dimensionality of the input vector, x, 
and thus to prune the input data set, so that a smaller network 
can be utilized as a model of relationship between the data. 
Initial findings on this subject have been published in [4-6]. 
This paper introduces a more general and formal approach to 
reduction of input size of the network. The sensitivity ap- 
proach can also be used to delete weights which are unimpor- 
tant for neural network performance as it has been proposed 
in [7]. 

SENsrrrvrnEs TO INPUTS 
Let us define the sensitivity of a trained MFNN output, ok, 
with respect to its input X; as 

o y- — -=— 

which can be written succinctly as 
°t 

Ski * Sx. 

(la) 

(lb) 

By using the standard notation of an error backpropagation 
approach [3], the derivative of (la) can be readily expressed 
in terms of network weights as follows 

dx-t 

J-l 

}-l 
'k'dx: 

(2) 

where y,- denotes the output of the j-th neuron of the hidden 
layer, and Ofc' is the value of derivative of the activation func- 
tion o=f(net) at the k-th output neuron. This further yields 

(3) 

where y,-* is the value of derivative of the activation function 
y=f(net) of the j-th hidden neuron (yj'=0 since the J-th neu- 
ron is a dummy one, i.e. it serves as a bias input to the output 
layer). The sensitivity matrix S (Kxl) consisting of entries as 
in (3) or (lb) can now be expressed using array notation as 

S = O' x W x Y' x V (4) 

W (KxJ) and V (Jxl) axe output and hidden layer weight ma- 
trices, respectively, and O' (KxK) and Y' (JxJ) are diagonal 
matrices defined as follows 

O' * diagfpS, o2', .... V) (5) 

r = diagfy,; y2' yj) 

Matrix S contains entries Sy which are ratios of absolute in- 
crements of output k due to the input i as defined in (lb). This 
matrix depends only upon the network weights as well as 
slopes of the activation functions of all neurons. Each training 
vector x(n)S96, where 96={x<1), x(2), .... xW} denotes the 
training set, produces different sensitivity matrix S(n) even for 
a fixed network. This is due to the fact that although weights 
of a trained network remain constant, the activation values of 
neurons change across the set of training vectors x(n), n=l, 2, 
..., N. This, in turn, produces different diagonal matrices of 
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derivatives O' and Y', which strongly depend upon the neu- 
rons' operating points determined by their activation values. 

MEASURES OF SENSITIVITY 
OVER A TRAINING SET 

In order to possibly reduce the dimensionality of input vec- 
tors, the sensitivity matrix as in (4) needs to be evaluated over 
the entire training set 96. Let us define the sensitivity matrix 
for the pattern xn as S(n). There are several ways to define the 
overall sensitivity matrix, each relating to the different objec- 
tive functions which need to be minimized. 

The mean square average sensitivities, S^ avg, over the set 95 
can be computed as 

H,cvg (6) 

Matrix Savg (Kxl) is defined as [SaVg]=SkiiaVg- This method of 
sensitivity averaging is coherent with the goal of network 
training which minimizes the mean square error over all out- 
puts and all patterns in the set. 

The absolute value average sensitivities, S^ at,s, over the set 
93 can be computed as 

*K,cbs (7) 

Matrix Sabs (Kxl) is defined as [Sabs]=Skiiabs. Note that sum- 
ming sensitivities across the training set requires taking their 
absolute values due to the possibility of cancelations of nega- 
tive and positive values. This method of averaging may be 
better than (6) if sensitivities S^ti, n=l, .„, N, are of disparate 
values. 

The maximum sensitivities, S^ 
computed as 

?«-**.-55(sJ} 

msuo over the set 96 can be 

(8) 

Matrix Smax (KxT) is defined as [Smax]=Skijinax. This sensitiv- 
ity definition allows to prevent pruning inputs which are rele- 
vant for the network only in a small percentage of input vec- 
tors among the whole training set However, it can happen 
that a few fuzzy data entries in a large set can affect entries 
of sensitivity array by. associating fuzziness with additional 
inputs. Those fuzzy results are masked in such a case by aver- 
aging in (6)-{7), and not by (8). Therefore the significance of 
inputs can be overestimated and some unimportant inputs 
may remain after reducing the dimension. 

Any of the sensitivity measure matrices proposed in (6)-(8) 
can provide useful information as to the relative significance 
of each of the inputs in 93 to each of the outputs. For the sake 
of simplicity, however, only the matrix defined in (6) will be 
used in further discussion. The cumulative statistical in- 
formation resulting from (6) will be used along with criteria 
for reducing the number of inputs to the smallest number suf- 
ficient for accurate learning. These criteria are formulated in 
the next section. 

CRITERIA FOR PRUNING INPUTS 
Inspection of the average sensitivity matrix Savg allows to de- 
termine which inputs affect outputs least. A small value of 
Ski,avg in comparison to others means that for the particular 
k-th output of the network, the i-th input does not significant- 
ly contribute to output k, and may therefore be possibly disre- 
garded. This reasoning and results of experiments allow to 
formulate the following practical rule: The sensitivity ma- 
trices for a trained neural network can be evaluated for both 
training and testing data sets; the values of average sensitiv- 
ity matrix entries can be used for determining the least signifi- 
cant inputs and for reducing the size of network accordingly 
through pruning unnecessary inputs. 
When one or more of the inputs have relatively small sensitiv- 
ity in comparison to others, the dimension of neural network 
can be reduced by dropping them, and smaller-size neural 
network can be successfully retrained in most cases. The cri- 
terion used in this paper for determining which inputs can be 
pruned is based on the so called largest gap method. 
In order to normalize the data relevant for comparison of sig- 
nificance of inputs, the sensitivity matrix defined in (6)-(8) 
has to be additionally preprocessed. The formulas often used 
for scaling are given in (9) and map each input into range [0 
; 1] and each output output into range [-1; 1]:   
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(9) 

If input and output data scaling (9) was performed before net- 
work training, no additional operations on Sy is required and 
we have 

4.^ * Su (10) 

Note that the scaling can be performed either on entries of S 
or Savg. Experiments were performed also for scaling inputs 
into range [-1; 1]. Similar results were achieved for the same 
learning conditions. The latter scaling seems to fasten the 
learning convergence while accuracy and relations among 
sensitivities remain unchanged. 
In case when network original inputs and outputs are not 
scaled to the same level, additional scaling (11) is necessary 
to allow for accurate comparison among inputs. 

5«.<n* 
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The significance of i-th input 4>; across the entire set 96 is de- 
fined as: 

*'-*£& .{**..*) (12) 

Oabs and <I>max can be evaluated similarly to <J>abs defined in 
(12). In order to distinguish inputs with high and low impor- 
tance, entries of <J>j have to be sorted in descending order so 



that: 

*M.+I * **■ . « = 1  * " 1 (13) 

where im is a sequence of sorted input numbers. Let us define 
the measure of gap as (14) 

** * «r5- (14) 
Im+l 

and then find the largest gap using the formula (15). 

Skux ~ "^{sim}   and   "cur ~ « such that gitn = giax    (15) 

If condition (16) is valid, then the found gap between mcux 
and mcuT+i is large enough. 

Cgmx > Ä„M ^16) 
Constant C from (16) is chosen arbitrarily within the reason- 
able range (e.g. C=0.5. The smaller C is, the stronger condi- 
tion for existence of the acceptable gap is.) All inputs with in- 
dex {im+i»ii-i} can be pruned with the smallest loss of 
information to the MENN. 

The gap method can be also applied for comparison among 
sensitivities of inputs to each output separately. For this pur- 
pose, a set containing candidates for pruning can be created 
for every output. Final pruning is performed by removing 
these iuputs which can be found in every set determined pre- 
viously for each output independently. 

Certainly, Savg can be evaluated meaningfully only for well 
trained neural networks. Despite this disadvantage, proposed 
criteria can still save computational effort when initial learn- 
ing can be performed on smaller, but still representative sub- 
set of data. Savg can be evaluated based either on data set used 
for initial training or on complete data set. Subsequently, 
newly developed neural network with appropriate inputs can 
be retrained using the full set of training patterns with reduced 
dimension. 

NUMERICAL EXAMPLES 

A series of numerical simulations was performed in order to 
verify the proposed definitions and the pruning criteria. La the 
first experiment a training setfor a neural network was gener- 
ated using four inputs X1..X4 and two outputs 01 and 02. Values 
of outputs were correlated with xi and xz for 01, and with X2 
and X3 for 02. Input vectors x (4x1) were produced using a ran- 
dom number generator. The expected values of vector d (2x1) 
for the output vector o (2x1) were evaluated for each x using 
a known relationship d=F(x) where d is the desired (target) 
output vector for supervised training. The training set 96 con- 
sisted of N=81 patterns. Aneural network with 4 inputs, 2out- 
puts and 6 hidden neurons (1=5, J=7, K=2) has been trained 
for the mean square error defined as in (17) 

MSE = 
im*-*?)2 

N (17) 

equal 0.001 per input vector. Matrices of sensitivities were 
subsequently evaluated and Savg produced at the end of train- 
ing over the entire input data set 93. 

The changes of sensitivity entries during learning are pres- 
ented in Fig. 1. It can be seen that an untrained neural network 

0.261.   c":,:.,;,'., ' ' • —r -■» Sensitivity 

4000 5000 5 
Training Cycles 

Fig. I. Sensitivity profile during training for the full training set 

in the example has per average smaller sensitivities than after 
the training. During the training some of the average sensiti- 
vities SkiiaVg increase, while others converge towards low val- 
ues. Final values of sensitivities of the first output offer hints' 
for deleting X3 and X4, and these for the second output indicate 
that xi and X4 could be deleted. The only input which shows 
up in both sets candidates for deletion is X4. Therefore, the 
fourth input to the network can be skipped and its dimension 
reduced to 3 (1=4). 

After deleting X4 from the learning data set the new network 
with 3 inputs was trained successfully with the same accura- 
cy. The learning profiles for full and reduced input sets for the 
same learning conditions are compared in Fig. 2. Not only the 

incorrectly pruned training set 

3000 4000 5000 
Training Cycles 

Fig. 2. Learning profile for full and pruned training sets. 

network with 3 inputs trains within a smaller number of 
cycles, but each learning cycle is performed quicker due to 
the reduced input layer size. 

If an input not recommended for pruning is erroneously de- 
leted, the network was found unable to leam the data sets. The 
mean square error per pattern has remained at the level of 
approximately 0.25 as it is shown in Fig. 2. The entries of the 
sensitivity matrix remain at low level as it is shown in Fig. 3. 
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Fig. 3. Sensitivity profile during training for 
incorrectly trimmed training set 
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There may still be some gap between entries, but it cannot be 
used for pruning because die MFNN has not learned vectors 
correctly and after input dimension reduction would not be 
able to leam more accurately. The gap which can be seen in 
Fig. 3 means that for the insufficient accuracy which was 



achieved during the training, only one input could be left in 
the network without significant deterioration of perfor- 
mance. 

The second experiment was performed using larger network 
and fuzzy data. MFNN had 20 inputs (1=21), 10 hidden neu- 
rons (J=26) and 4 outputs (K=4). There were N=500 patterns 
in the training set and several additional data sets of the same 
size for network performance evaluation. The network was 
successfully trained to the MSE error of 0.15. However, due 
to the fuzziness of the data MSE error for additional sets re- 
mained at the level of 0.20. 

All outputs were strongly correlated with inputs Xi, x2, x3, X4, 
X6, xs, and X9. Input Xß during data generation was multiplied 
by random numbers, while the influence of x2 and X4 on out- 
puts was scaled down to remain small in comparison to other 
inputs (less than 0.05). 

The input importances calculated using formulas (6)-(8) are 
shown in Fig. 4. Inputs x2 and X4 are placed even after sorting 

0.700 

*cur    . 
(NOTIECO- 
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4>m« 4>«bs 
Fig. 4. Input significance <f> evaluated using different 

overall sensitivities (6X8) and pruning criterion (16). 

as less important than some of them which are not correlated 
at all. This occurred because of their low correlation to out- 
puts, and they can be ignored as well as other not correlated 
for given MSE error as a final condition for training. The se- 
quence of significance is the same for all proposed methods, 
however, the size of gaps are different in each case. Value 
C=0S prevents pruning using cbmax definition. Note that the 
maximum method does not give the clear clue where to set the 
level for purging due to fuzziness of the training data. 

The result of initial training is shown in Fig. 5. It can be deter- 
0.5001 

OTHER 

200 250        300 
. Training Cycles 

rig. S. Input significance $„s changes during training 
for the full training seL 

mined from this figure which inputs should remain after prun- 
ing. The network performance after pruning is shown in Fig. 
6. No additional dimension reduction is possible because no 
large gap in input importances can be found. The speed of 
training has increased mostly because of reduction of the 
MFNN size (input dimension reduced by 4). The necessary 
number of cycles for training has also decreased, but not so 
dramatically as in the first experiment. 

200 250       300 
_.    ,  . .     ._ , Training Cycles 
hig. 6. Input significance <()avg changes during training 

for the pruned training set. 

CONCLUSIONS 

Using the sensitivity approach for input layer pruning seems 
particularly useful when network training requires large 
amount of redundant data. In the first phase, network can be 
pre-trained until the training error decreases satisfactorily. 
Then sensitivity matrices can be evaluated and dimension of 
the input layer possibly reduced. Learning can subsequently 
be resumed until the training error reduces to acceptable low 
value. This process can be repeated, however, usually only 
the first execution yields significant improvement Numeri- 
cal experiments indicate that the effort of additional network 
retraining can be too high in comparison to benefits of further 
ininimization. 

Should the redundancy in training data vectors exist, the pro- 
posed approach based on the average sensitivity matrices for 
input data pruning allows for more efficient training. This can 
be achieved at a relatively low computational cost and based 
on heuristic data pruning criteria outlined in the paper. The 
approach can be combined with other improved training strat- 
egies such as increased complexity training [5]. Extension of 
the proposed sensitivity-based input pruning concept beyond 
continuous output values seems desirable for case of net- 
works with binary outputs such as classifiers and other binary 
encoders. 
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ABSTRACT 
Anew approach to the problem of n-dimensional continuous 
and sampled-data function approximation using two-layer 
neural network is presented. The generalized Nyquist theo- 
rem is introduced to solve for the optimum number of training 
examples in n-dimensional input space. Choosing the small- 
est but still sufficient set of training vectors results in the re- 
duced learning time for the network. Analytical formulas and 
algorithm for training set size reduction are developed and il- 
lustrated by two-dimensional data examples. 

INTRODUCTION 

Neural networks as approximators of input/output relation- 
ships smong many variables are currently under intense in- 
vestigation, with emphasis on their approximation capabili- 
ties and performance for different network architectures and 
learning conditions [1]. Generalization and approximation 
without specifying equations and coefficients are indeed very 
promising features of neural networks, particularly in cases 
where the unknown model describing a plant is complex and 
training data abundant. Due to their ability of generalization, 
multilayer feedforward neural networks (MENN) are com- 
monly used for this purpose [2], [3]. 

Papers on the subject of approximation using MFNN were 
published lately [4], [5]; however, they do not focus on the 
size niinimization of tie training data set Preliminary heuris- 
tic solutions to the training data set minimization problem 
along with single variable function examples have been pub- 
lished in [6] and [7]. The sampled-data function case based 
on results for continuous function are reported in [8]. 

This paper generalizes an analytical approach for multidi- 
mensional input space for continuous function case. An ana- 
lytical approach based on the sampling theorem is applied to 
function approximation using MFNN. An analogy between 
time-dependent functions and single variable functions is 
made and then expanded into multidimensional space. In this 
way, an estimated minimum sampling frequency for MFNN 
training can be found for a required approximation accuracy. 
The results can be used for reducing the number of data entries 
required in a neural network training set. The experimental 
part of the paper illustrates the use of this method with a sim- 
ple example. 

SAMPLE DATA THEOREM FOR 
SAMPLING RATE EVALUATION 

The well-known Sampling Theorem (non-periodic signal 
case) states that: A function f(x) which contains no frequency 
components greater than jo Hz is uniquely determined by the 

values off(x) at any set of sampling points spaced at most 
l/(2f0) seconds apart [9], [10]. Sampling rates defined for 
time signals can be extended to other independent variables 
so that the generalized theorem for function approximation 
can be obtained. Each dimension of the transform will then 
correspond to one dimension of the original domain. 

Obviously, sampling with a certain frequency is needed to re- 
store the signal from the samples taken. However, the theo- 
rem refers to the ideal case where the input signal has a finite 
high frequency boundary so that it can be accurately restored 
from samples taken using the inverse Fourier transform. 
Real-life signals are not band-limited, and other mechanisms 
than Fourier transforms are used for restoring them. This pa- 
per focuses on analysis of approximation conditions for par- 
ticular network structures and neuron activation functions 
even though no theorem is available for approximation of sig- 
nals of infinite bandwidth. The developed algorithm is based 
on the assumption that only a certain fraction of information 
about the function is necessary for the approximation with 
given required accuracy. 

Let the continuous function to be approximated be given as 
f(x), 

f(x) : S — &>, where ffl C St" 

31 — (xA<Wl - xMAXl) X (XMM2 " xtOJn) X — X (XKEW " *A4U3v) (1) 

X ± [XV Xj,  _, xx] 

and let B; be the range of the i-th variable x;: 
Bi ~ xUAXi ~ xUWi (2) 

The multidimensional Fourier transform of f(x) is defined in 
the following way 

XUAX\ X»UX2     x*uxn 

j        J      -     I    /(*1.*2. — xii> 
*MBil   *UBl2       ZMWN 

where     Q ± [<alP ai^ _ , a>N] 

The criterion for minimum sampling frequency estimation 
can be formulated in a number of ways. First, the basic formu- 
la for optimization should be defined as a norm evaluating the 
information density at particular frequencies. This norm as 
defined in (4) has a meaning of generalized energy density. 

E/.Q) ± \F{Hf (4) 

We also use function (5) for evaluating the amount of in- 
formation enclosed by the frequency band Q. In case of a mul- 
tidimensional band-limited function, the energy, E(Q), can 
be computed by integrating the generalized energy density (4) 
in the frequency domain in spherical [11], or more precisely, 

^(Ä* 
(3) 



ellipsoidal coordinates within an N-dimensional ellipsoid. 
For example, in the simplest case assuming that function F has 
isotropic properties in each dimension (GO=COI=ü)2=..-=(ON), 
this yields 

1 2x      7x 2x 

r-0   #,-0^2-0      fy_,-0 

where J(r, d>i, (b2,.... <J>N) is a term resulting from the change 
of the integration coordinates from cubic to spheric [12]. 
However, in general it cannot be assumed that the approxi- 
mated function will have isotropic properties. It may then be 
reasonable to choose smaller sampling densities in some di- 
mension. The function (5) becomes more complex due to dif- 
ferent boundaries in each dimension 

^        J I        \   ~       \       lFKrcos*lcos*2-"cos^Y-l. (6) 
r-0   ^,-O#2-0    t/f-l-0 

<02rM#1c«^2_coi#JV_1._,o,Arrin#IÄ#2_«ii#JV_1)(2y(.^1^r_<^JV_1<i. 

where J(r, ßf <bi, <j>2,.«., <J>N) is a term obtained as previously 
from the change of the integration coordinates from cubic to 
spheric. 

Let QNFO called the information rate factor be the fraction 
describing the required minimum energy content of the signal 
sampled with frequency Q, divided by the energy ETOT of the 
original function (or function sampled with very high fre- 
quency). The information rate factor is a theoretical measure 
of the information amount needed to approximate a function 
with required accuracy. Function f(x) needs to be sampled 
with frequency & satisfying condition (7). 

E(Q) 

XPmd * CmFO 0) 
where the frequency ^MAX-fai, ©2, „ , ©MJMAX is high 
enough, so that 

.WPMA - 0»<J 4ß«u) ~ETOT (8) 
Let us now express the total number of samples in the training 
set The number of samples taken per dimension, Mrj, is 
equal to 

*tW*(2»/»i+l) (9) 
The total number of sampled data, ML, can be expressed as 

N 

Afi(«i,«2. - .«*) * YlMd<°D (10) 
£-1 

The objective is to search among vectors Q which satisfy the 
condition (7) and minimize the value of ML defined in (10). 
The vector QOPT- [»l, a>2, _, OON]OPT which is the solution 
to the given optimization problem contains the minimum suf- 
ficient sampling frequencies in the new training data set. The 
final sampling interval, Ax;, is different for each dimension 
depending on the chosen frequency CDJ 

Ax: = _L 
2a>, 'OPTl (11) 

ALGORITHM FOR ESTIMATION OF THE 
INFORMATION RATE FACTOR 

The last constant which has to be estimated is QNFO from 
equation (7). This constant defines the minimum sufficient 

amount of information after narrowing the function frequen- 
cy spectrum in terms of its energy. 
Let us define mean square average error of approximation, 
MSE, as 

MSE * 1/ '-^—  (12) 

where P is the number of data entries, dW is the known func- 
tion value for input vector X(P), and oöO is the value computed 
by the neural network. Error defined in the sense of (12) is 
based on the energetic distance between the original and the 
approximated function and is also useful for expressing the 
training termination condition. In order to determine the val- 
ue of MSE, it is necessary to know the average power of the 
original function, PTOT - PTOT can be calculated from the 
Fourier power spectrum in the frequency domain either in the 
x domain using formula (13) for the continuous case, or (14) 
in case of discrete data. 

ZUAX\   xMAXl       "UAXN 

PTOT — 
"uwi  xumi     "umti 

f(xvx2, _.. x^dx^ _ dxN 

N 

im2 

(13) 
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The terms of integration in equation (13) or summation in (14) 
evaluate the same energy, which is used in the denominators 
of condition (7). 
The required approximation accuracy W links together MSE 
and PTOT- 

MSE 
(15) 

The reason for normalizing the variables defined in (12) and 
(14) is to allow easy comparison of results of training and to 
evaluate the quality of the approximation without considering 
the number of patterns used each time. Finally we have the 
relation 

Cam, = 1 ~ V (16) 
which links the final condition for training (12) with equa- 
tions (7). 

ALGORITHM FOR FINDING MINIMUM 
SUFFICIENT SAMPLING RATES 

The following algorithm for finding the minimum sufficient 
sampling rates is based on the theoretical assumptions pres- 
ented above: 
STEP1.     Compute FFT of the function.  f(x) } F(Q) 

Note that the upper boundary of the Fourier transform in 
real life cannot be infinite. Condition (8) has to be satis- 
fied. 
If the frequency response is not small enough at the highest 
freq uency in comparison to lower ones, i .e. (8) is not satis- 
fied, the Gist step must be repeated for 5 to 10 times more 
frequent sampling in the appropriate dimensions. 
Complete the information measurement function E(Q) as 
in (6) and normalize it so that its maximum is equal to 1. 
F(Q)»E(Q) 

STEP 2. 

STEP 3. 



STEP 4.      Evaluate CIKFO 
ar>d MSE for particular requirements of 

approximation accuracy V using (16). 

STEP 5.      Check for what frequencies function E(Q) from (6) reach- 
es the levels evaluated in the STEP 4. 
{Q} 4 { Q : E(Q) > CINF0 ETOT} 

STEP 6.      Solve forl which produces minimum ML in (10) using the 
set of {Q} satisfying condition from STEP 5. 
QOPT* ß : ML(Q) = min{ML(Q)} overall Qe{Q}. 

STEP 7.      Choose the sampling steps slightly higher than those cor- 
responding closely to frequencies computed in STEP 6. 

STOP. 

If there are problems with convergence, the MFNN architec- 
ture should be changed or the learning constants decreased. 
If the approximation error after completed training is exces- 
sive, sampling steps should be decreased by choosing more 
severe constraints than given in (16). 

EXPERIMENTAL RESULTS 

A series of experiments were conducted to confirm the 
theoretical results and to test the heuristic guidelines pro- 
posed for sampling rates. A MFNN with one hidden and one 
input layer has been used for single-variable function approx- 
imation. The experiments were performed for approximating 
one- [6-7], and two-dimensional functions using neural net- 
work architectures with different numbers of hidden neurons 
and for different final error conditions which provide more in- 
sight into the practical use of the method. 

To prevent saturation of neurons and to provide similar condi- 
tions for each test, the scaling of input data was performed so 
that normalized input variables varied form 0 to 1. Since bipo- 
lar continuous neurons were used, it was necessary to scale 
functions to be approximated to the range between -1 and 1. 
Standard and modified (lambda learning [13]) error backpro- 
pagation algorithms were used for learning. Functions were 
first sampled with very high density for evaluating the dis- 
crete Fourier transform and for evaluating the approximation 
accuracy after completing training. Before each training with 
a new sampling step, a new learning data set was created and 
network weights were initialized once again. Each training 
was performed until it reached the MSE error set previously. 

Theoretical estimations were compared with frequencies ob- 
tained from experiments. As anticipated, there exists an opti- 
mal number of learning points for a given approximation 
accuracy. This number of points can be evaluated from the 
integral of its Fourier transform (6). 

In the following example the discrete number of samples per 
dimension is used instead of continuous frequency to make 
the theoretical results consistent with obtained from experi- 
ments. I=[li, I2,..., IN] is the discrete frequency in DFT do- 
main and corresponds to continuous frequency Q in the fol- 
lowing way: 

Fig. la shows an example function used for approximation. 
Fig. lb depicts one quadrant of the frequency domain of the 

200200 

Approximated function f(x) as in (18) (a), 
and its Fourier transform (b). P-TOT=1.12. 

magnitude of its discrete Fourier transform. Approximated 
function was given by formula (18). 

x\x2 + 5xxx\ 
/to  =  .2   ,    „2    ,    r!,    ■   *1   =    -   1-1.   *2   =    "   1.-1 (18) ; + 0.1 

The normalized energy function of f(x) given by (18) covered 
by the frequency 1 is shown in Fig. 2. The normalized energy 

B. (17) 

Fig. 2. Amount of energy Fig. 3. Number of samples in 
ENORM® covered by bounded     learning set in area of normal- 
frequency spectrum. Profiles        ized E(II,12)>CINFO- Profiles 
for ENORM>0.90. for CINFo>0.93. 

has been computed from the left side of condition (7). 

The average power, PTOT> 
was calculated for the given func- 

tion using the formula (14); it is of value PTOT=1-12. A 
MFNNs with 2 inputs, and 20 hidden neurons was trained to 
the error MSE=0.08 as defined by the formula (12). *P and 
QNFO 

were then calculated using formulas (15) and (16), giv- 
ing the values: W=0.07, and CrNFo=0.93.The optimum num- 
ber of samples for each dimension has been found from Fig. 
3 by finding the minimum of ML over frequencies satisfying 
condition (7) which gives the contour line bounding the do- 
main of solution. This figure shows the contours for the num- 
ber of data entries in the training set, ML, for different lj and 
I2 which satisfy the condition (7). The minimum of ML can be 
seen at li=4 and 12=8. It can be evaluated from equation (10). 
This corresponds to 9 samples for variable xj and 17 samples 
for variable X2. 

MFNNs with architectures described above were trained for 
different numbers of samples in each dimension to verify the 
theoretical results. The results of training are illustrated in 
Figs. 4-8. Fig. 4 and Fig. 5 show the quality of training in 
terms of MSE and the maximum error achieved during 
approximation verification based on a very large testing set 
(500x500 samples). It can be seen that the error decreases dra- 
matically when li>2 and 12>3.This corresponds to 5 and 7, 
respectively, samples per dimensions. 

Fig. 6 shows the number of training steps required for the 
learning process, while Fig. 7 shows only the number of itera- 



MSE »y.. 

Fig. 4. Neural network performance   Fig. 5. Neural network performance 
(MSE) after training in versus sam-     (MAX) after training versus sam- 
pling frequencies. MSE=0.08 

Training Steps 

pling frequencies 1. MSE=0.08. 

Fig. 6. Number of training steps 
versus sampling frequencies. 

Fig. 7. Number of iterations 
versus sampling frequencies. 

tions (cycles). After achieving certain frequencies of sam- 
pling the function to build a training set, the number of itera- 
tions does not increase or increases only slowly, while the 
overall number of steps still increases due to the growing 
number of data entries. 

Fig. 8 summarizes the computational experiment. The num- 

1      2     3      4   1,5     6     7 

Fig. 8. Number of training steps 
versus sampling frequencies for 
area of sufficient learning; 

ber of iterations for the sampling frequencies I providing ac- 
curate learning is displayed. Local minima can be observed 
for the frequencies U=2 and 12=5 for the first MFNN and for 
ll=2 and 12=6 for the second. This corresponds to five and 
eleven, and five and thirteen samples per dimension, respec- 
tively. This is in agreement with four and eight samples per 
appropriate dimension. The obtained results are close enough 
to those evaluated previously using the derived theoretical al- 
gorithm and displayed in Fig. 3. 

VI CONCLUSIONS 

The results of the computational experiments and theoretical 

studies for continuous function case showthatthegeneralized 
sampling theorem can be applied to the approximation prob- 
lem using neural networks. The least possible, but still large 
enough for the sake of accuracy data set should be selected, 
and then other network parameters can be found through 
training [14-17]. Our results indicate that the least in size 
training sets can be found for any multidimensional functions 

basing on the knowledge of its frequency powers spectrum 
Successfully trained neural networks capable of accurate 
approximation can be trained using a training set with sam- 
pling density of evaluated rate. 
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